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Abstract

Childhood socioeconomic position (SEP) is a major determinant of health and well-being across the entire life course. To effectively
prevent and reduce health risks related to SEP, it is critical to better understand when and under what circumstances socioeconomic
adversity shapes biological processes. DNA methylation (DNAm) is one such mechanism for how early life adversity ‘gets under the
skin’. In this study, we evaluated the dynamic relationship between SEP and DNAm across childhood using data from 946 mother–child
pairs in the Avon Longitudinal Study of Parents and Children. We assessed six SEP indicators spanning financial, occupational and
residential domains during very early childhood (ages 0–2), early childhood (ages 3–5) and middle childhood (ages 6–7). Epigenome-wide
DNAm was measured at 412 956 cytosine-guanines (CpGs) from peripheral blood at age 7. Using an innovative two-stage structured life-
course modeling approach, we tested three life-course hypotheses for how SEP shapes DNAm profiles—accumulation, sensitive period
and mobility. We showed that changes in the socioeconomic environment were associated with the greatest differences in DNAm,
and that middle childhood may be a potential sensitive period when socioeconomic instability is especially important in shaping
DNAm. Top SEP-related DNAm CpGs were overrepresented in genes involved in pathways important for neural development, immune
function and metabolic processes. Our findings highlight the importance of socioeconomic stability during childhood and if replicated,
may emphasize the need for public programs to help children and families experiencing socioeconomic instability and other forms of
socioeconomic adversity.

Introduction
Socioeconomic position (SEP) is a fundamental determinant of
health and disease across the lifespan (1). As defined by Krieger
et al. (1997) (2), SEP is an ‘aggregate concept’ composed of diverse
components of economic and social well-being across individual-,
household- and neighborhood-level domains, including both
resources (e.g. weekly income) and rank-based characteristics
(e.g. occupational prestige). SEP therefore can be measured across
time by various indicators, like job stability, ability to afford basic
household needs and neighborhood quality, which are known to
play related, yet distinct roles in health and life outcomes (3–5).

Dozens of observational and quasi-experimental studies exam-
ining these indicators have shown that children growing up in low
SEP families have increased risk for both short- and long-term
cognitive, socioemotional, behavioral and physical/mental health
deficits compared to their high SEP counterparts (6–9). Some
of these SEP-related disparities are evident very early in devel-
opment, starting shortly after birth (10–13). Yet, the biological
mechanisms that explain these well-established SEP and health
relationships remain relatively unknown, limiting our ability to

disentangle specific pathways of pathophysiology and design tar-
geted interventions.

In the past two decades, epigenetic studies have exploded as a
means of potentially unraveling the biological pathways through
which SEP ‘gets under the skin’. Most epigenetic studies have
focused on DNA methylation (DNAm) (14), which occurs when
methyl groups are added to cytosines in the DNA sequence,
typically within cytosine-guanine (CpG) dinucleotides (15). These
DNA modifications do not alter the sequence of the genome, but
can influence how genes are expressed in ways that can have
important short and long-term health consequences (16).

Recent reviews summarizing the effects of SEP on epigenetic
patterns suggest that SEP is linked to DNAm differences in child-
hood and adulthood (17–19). In fact, over 30 studies have found
a relationship between childhood SEP and DNAm. However, less
than a quarter of these studies were longitudinal by design (i.e.
including repeated measures of SEP exposure across time). Fur-
ther, less than half were epigenome-wide association studies
(EWAS) analyzing SEP-related DNAm variations. In one recent
comprehensive review of the SEP-DNAm literature, the number
of significant, SEP-associated CpGs reported across prior EWAS
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studies ranged from 1 to 2546 (median = 10), yet relatively no
consistent patterns in SEP-associated DNAm changes emerged
between studies (see Cerutti et al. (19)). One possible explanation
for these mixed results is that studies have conflated both the
type of SEP indicator measured and the timing of SEP measure-
ment (19). Indeed, few studies have investigated the effects of SEP
type and/or timing on DNAm, even though it is well known that
both features of SEP can influence the extent of its impact (20).

Prior studies that have analyzed the associations between
multiple types of SEP indicators and DNAm have found little
to no overlap in DNAm changes across SEP measures (21–23),
suggesting that different SEP indicators may result in distinct
biological signatures and subsequent cascading health risks. Yet,
it remains relatively unknown whether exposure to distinct SEP
indicators (e.g. low household income vs. neighborhood disadvan-
tage) during childhood impacts later DNAm to a similar extent.

Even fewer studies have investigated the impact of SEP tim-
ing on DNAm, likely because it is difficult to collect multiple,
repeated measures across time in large, epigenetic datasets. In
some notable exceptions, studies comparing the time-dependent
effects of childhood SEP (24–27) on DNAm have found timing
differences with respect to SEP’s impact, consistent with the idea
that there may be sensitive periods of elevated plasticity during
childhood when adversity-induced biological changes are most
likely to occur. However, whether different aspects of the socioe-
conomic environment across developmental stages differentially
influence DNAm remains largely unexplored.

The current study aimed to address this gap by utilizing a large,
longitudinal birth cohort with multiple, repeated measures of
socioeconomic-related hardships assessed prospectively across
childhood before epigenome-wide DNAm collection at age 7.
We specifically sought to assess how different indicators of the
socioeconomic environment (e.g. neighborhood quality, job loss,
low household income) measured repeatedly across the first
seven years of life associated with child epigenetic alterations.
Given that different socioeconomic domains may impact health
via related, but distinct pathways (4, 28), we analyzed exposure
to seven distinct socioeconomic-related hardships. Additionally,
because socioeconomic adversity could have multiple time-
varying effects on DNAm, we tested three commonly examined
hypotheses from the life-course epidemiology literature (29) to
evaluate the circumstances under which childhood socioeco-
nomic adversity associates with DNAm changes at age 7: 1)
accumulation hypothesis, where the impact of low SEP increases
with the number of time periods exposed, regardless of when it
occurs; 2) sensitive period hypothesis, where the impact of low
SEP is larger in magnitude during a certain developmental period
compared to any other; and 3) mobility hypothesis, where the
impact of SEP on DNAm is driven by an upward or downward
change in SEP between adjacent developmental time periods.

Uncovering the dynamic relationships between SEP and DNAm
across childhood will not only highlight the biological mecha-
nisms driving the effects of SEP on long-term health, but also
will offer clearer insights to guide targeted interventions aimed
at reducing the negative consequences of socioeconomic-related
adversity in childhood.

Results
Sample characteristics and prevalence of
socioeconomic adversity
We analyzed data from 946 mother–child pairs from the
Avon Longitudinal Study of Parents and Children (ALSPAC), a
longitudinal birth-cohort in the United Kingdom (UK). Children

included in our analytic sample were mostly White (97.1%) and
from both sexes (49.9% female) (Supplementary Material, Table
S1). Among the six SEP indicators analyzed (i.e. job loss, income
reduction, low family income, financial hardship, major financial
problem and neighborhood disadvantage), job loss was the least
reported socioeconomic adversity (11.5% ever-exposed), and
income reduction was the most common (73.8% ever-exposed)
(Table 1). The prevalence of all adversities decreased over time
(Table 1, Supplementary Material, Fig. S1). The six SEP indicators
were moderately correlated with each other during all three
childhood periods (Supplementary Material, Fig. S2), suggesting
they captured distinct aspects of the socioeconomic environment.

Childhood socioeconomic adversities were
associated with differential DNAm at 62 CpGs
We next examined possible time-dependent associations between
each of the SEP indicators and DNAm at individual CpGs using a
two-stage structured life-course modeling approach (SLCMA) (30–
32), which identified the life-course hypothesis most supported in
the observed data and estimated the magnitude of associations.
In this and the following three sections, we summarize 1) the
top CpGs associated with socioeconomic adversity, 2) the most
selected life-course hypotheses, 3) the robustness of findings
evaluated through a variety of sensitivity analyses and 4) the
biological relevance of findings.

We identified 62 CpGs where exposure to socioeconomic adver-
sity explained more than 3% of the variance in DNAm (R2 > 3%,
Supplementary Material, Table S2). Most of the 62 CpGs were
linked to the two least commonly-reported adversities in this
sample: neighborhood disadvantage (17 CpGs) and job loss (15
CpGs, Table 2). Only four of the 62 CpGs identified using the R2

cutoff also passed a false discovery rate (FDR) < 0.05 significance
threshold, all of which were associated with neighborhood disad-
vantage (Table 2).

Of note, 61 of these CpGs showed the same direction of effect
as that reported in at least two prior EWASs examining SEP and
DNAm. Furthermore, 17 out of 62 (27%) CpGs showed at least a
nominal (P < 0.05) association in at least two prior EWASs. Of these
17 CpGs, two (cg23685969 and cg19260606) exceeded a statistical
significance threshold of FDR < 0.05 in at least one prior EWAS
(Supplementary Material, Table S3, Supplementary Material, Fig.
S3).

Mobility and sensitive period hypotheses were
most often selected
The SLCMA allowed us to determine which of the following three
life-course hypotheses were most supported in the observed data:
accumulation, sensitive period and mobility (Fig. 1). Of the life-
course hypotheses we tested, mobility and sensitive period effects
showed the strongest associations with DNAm (Fig. 2A).

We first focused on the four socioeconomic adversities
for which we tested all three life-course hypotheses (low
family income, financial hardship, major financial problem and
neighborhood disadvantage, Supplementary Material, Table S4).
Here, 44 CpGs (R2 > 3%) were identified, of which four passed an
FDR < 0.05 threshold. The majority of CpGs reflected mobility
(20 CpGs) or sensitive period (22 CpGs) relationships. The most
selected life-course hypothesis varied by socioeconomic adversity.
Sensitive period hypotheses were selected for all nine CpGs iden-
tified from financial hardship, with middle childhood selected
for eight of them (Fig. 2A). By contrast, mobility (worsening SEP)
explained more DNAm variability resulting from neighborhood
disadvantage (11 of 17 CpGs) and major financial problem (4
of 5 CpGs). The time period when mobility had the greatest
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Table 1. Prevalence of exposure to socioeconomic adversity by developmental period in the ARIES analytic sample

Job loss
(N = 667)

Income
reduction
(N = 711)

Low family
income
(N = 619)

Financial
hardship
(N = 697)

Major financial
problem
(N = 710)

Neighborhood
disadvantage
(N = 687)

Very early childhood (0–2 years) 42 (6.3%) 458 (64.4%) 95 (15.4%) 127 (18.2%) 138 (19.4%) 83 (12.1%)
Early childhood (3–5 years) 32 (4.8%) 220 (30.9%) 79 (12.8%) 46 (6.6%) 69 (9.7%) 36 (5.2%)
Middle childhood (6–7 years) 18 (2.7%) 134 (18.9%) 55 (8.9%) 29 (4.2%) 60 (8.5%) 29 (4.2%)
Ever-exposeda 77 (11.5%) 525 (73.8%) 130 (21.0%) 147 (21.1%) 184 (25.9%) 98 (14.3%)
Average correlation over timeb 0.49 0.34 0.87 0.70 0.50 0.80

The first four rows present the number (%) of children who were exposed to the specific type of socioeconomic adversity at each developmental period or
ever exposed throughout the three periods. aChildren who were exposed during at least one period were defined as ever-exposed for the specific type of
socioeconomic adversity. bPolychoric correlations are presented, characterizing the average correlation over time within the given type of exposure. The
average within-SEP correlations were moderate to high, suggesting these measures were variable across time, which allowed for detecting differences across
periods. Exposures with correlations in excess of 0.90 typically cannot be used in the SLCMA.

Table 2. Summary of the SLCMA results for the 62 CpGs with R2 > 3%

Adversity Number of R2 > 3% CpGs Range of R2 Range of (P-values Number of FDR < 0.05 CpGs

Neighborhood disadvantage 17 3.0–4.2% 1.3 × 10−7—7.1 × 10−6 4a

Job loss 15 3.1–3.7% 5.8 × 10−7—8.8 × 10−6 -
Low family income 13 3.0–3.8% 1.7 × 10−6– 2.5 × 10−5 -
Financial hardship 9 3.0–3.7% 5.9 × 10−7– 8.5 × 10−6 -
Major financial problem 5 3.0–3.8% 2.6 × 10−7– 4.7 × 10−6 -
Income reduction 3 3.0–3.3% 1.5 × 10−6– 4.5 × 10−6 -

The R2 values reflect the increase in the variance of DNA methylation explained by the first hypothesis chosen after accounting for covariates. P-values were
calculated using selective inference, which assesses the significance of the increase in R2 explained. See Supplementary Material, Table S2 for the full list of
the 62 CpGs. SLCMA = structured life-course modeling approach. aFour CpGs for neighborhood disadvantage passed an FDR < 0.05 significance threshold:
cg20102336, cg08638097, cg23405172 and cg14212190.

impact differed across SEP indicators, with very early to early
childhood most often selected for neighborhood disadvantage,
and early to middle childhood most selected for major financial
problem (Fig. 2A). Accumulation was only selected for two CpGs,
linked to low family income. Of note, mobility hypotheses were
selected for all four FDR-significant CpGs, with a worsening
hypothesis (meaning downward mobility) selected for three
of them (Supplementary Material, Table S2). Fig. 2B shows at
these three CpGs, children exposed to worsening SEP had the
greatest shift in DNAm as compared to children with other types
of SEP trajectories, including those who had persistently low SEP,
worsening SEP, improved SEP or persistently high SEP.

For our instability indicators (job loss and income reduction),
which innately capture the effects of socioeconomic mobility,
we only tested accumulation and sensitive period hypotheses
(Supplementary Material, Table S4). The strongest evidence was
again for sensitive period effects, with middle childhood (age 3–5)
most selected for job loss (9 of 15 CpGs) and very early childhood
(age 0–2) most selected for income reduction (2 of 3 CpGs, Fig. 2A).
Accumulation was only selected for one CpG linked to job loss.

Overall, exposure to socioeconomic changes (captured through
instability indicators or mobility hypotheses) was associated with,
on average, a 3.8% difference in DNAm levels, explaining 3.4%
of the variance in DNAm across CpG sites after controlling for
covariates (Supplementary Material, Table S2). The same patterns
were found at the epigenome-wide level, with most CpGs showing
most variability in response to adversity from mobility and sen-
sitive periods, rather than the accumulation of exposure across
development (Supplementary Material, Fig. S4).

SLCMA results were robust to sensitivity
analyses
Additional covariate adjustment had minimal impact on
results
To assess residual bias in the identified SEP-DNAm associ-
ations and further ensure the robustness of our findings,

we additionally controlled for time-invariant SEP indicators,
population substructure estimated from epigenetic data, cord
blood DNAm, genetic variation and exposure to the other
five time-varying SEP indicators. After additional covariate
adjustments, the life-course hypothesis selected by Least Angle
Regression (LARS) remained the same for all 62 CpGs with
R2 > 3% (Supplementary Material, Table S5, Supplementary
Material, Table S6). Almost all CpGs remained significant at the
nominal P < 0.05 threshold after adjusting for time-invariant
SEP indicators (60 CpGs), population substructure (61 CpGs),
cord blood DNAm (61 CpGs) and exposure to the other five
SEP indicators (62 CpGs, Supplementary Material, Table S5).
The associations between socioeconomic adversities and DNAm
were also independent of genetic variation previously linked to
significant CpGs (Supplementary Material, Table S6).

Mobility hypotheses improved our ability to identify CpGs
related to SEP changes
SEP mobility during childhood had never been previously tested
on childhood DNAm to our knowledge. Therefore, we assessed the
insights gained from adding mobility hypotheses. We re-analyzed
the CpGs with an R2 > 3% for low family income, financial hard-
ship, major financial problem and neighborhood disadvantage
using only accumulation and sensitive period hypotheses. Consid-
ering only accumulation and sensitive period hypotheses, we were
unable to fully detect shifts in DNAm patterns related to changes
in socioeconomic environment. When mobility hypotheses were
omitted from the SLCMA analyses, there were minimal changes
to the main results showing effects of sensitive period on DNAm
(n = 22 CpGs), as the same hypothesis was selected with similar
effect estimates (Supplementary Material, Table S7). However, for
CpGs originally linked to mobility (n = 20), there were substantial
attenuations in the estimated SEP-DNAm associations: sensitive
period hypotheses were selected instead, which in turn, showed
smaller R2 (ranging from 0.04% to 1.6%) and much larger P-values
(ranging from 0.001 to 0.84, Supplementary Material, Table S7).
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Figure 1. Study design and the conceptual life-course models used in the structured life-course modeling approach (SLCMA). (A) Measurement of
childhood socioeconomic adversity (X) and DNA methylation (DNAm) over time (T). Exposure to socioeconomic adversities, or indicators of low
socioeconomic position (SEP), was measured repeatedly across three childhood periods: very early (0–2 years, T1), early (3–5 years, T2) and middle
childhood (6–7 years, T3). DNAm was measured around age 7. (B) Illustration of the life-course hypotheses tested in the SLCMA, the least angle regression
(LARS) variable selection procedure and selective inference test. Accumulation, sensitive period and mobility hypotheses were examined in this study.
Accumulation assumes that the effect of low SEP increases with the number of exposed periods. Sensitive period assumes that low SEP is particularly
impactful during one of the three time periods. Mobility assumes that changes in SEP across specific periods are particularly impactful. Early worsening
and early improvement refer to adversity getting worse (↑SEP, i.e. increase in exposure) or better (↓SEP, i.e. decrease in exposure) from very early to early
childhood, respectively; later worsening and later improvement refer to adversity getting worse or better from early to middle childhood, respectively.
For each socioeconomic adversity, hypotheses were encoded into variables and then entered into the LARS variable selection procedure to identify the
one explaining the most variability in DNAm at age 7 at each CpG site. We then performed post-selection inference to test the association between the
selected variable and DNAm as well as estimate confidence intervals. See Supplemental Methods for more details about SLCMA.

These findings suggest that when the underlying association
structure is misspecified, important DNAm signatures may not
be identified.

EWAS of ever-exposed vs. never-exposed failed to identify
time-dependent associations
To evaluate the loss (or gain) of information from the SLCMA com-
pared to more conventional epigenetic approaches, we performed
an epigenome-wide association study (EWAS) of any exposure
to each type of SEP adversity before age 7 and DNAm, thus
ignoring the timing or change of SEP over time. For 59 of the
top 62 CpGs (including the 4 FDR-significant CpGs), the effect
estimates from the SLCMA were larger in magnitude than those
from EWAS (Supplementary Material, Fig. S5). In addition, no CpGs
with an FDR < 0.05 were identified using EWAS of any exposure,
meaning ever-exposed vs. never-exposed. These findings suggest
the SLCMA was better able to identify developmentally sensitive
effects of socioeconomic adversity on DNAm profiles, whereas
EWAS might fail to detect signals if the true underlying hypothesis
was time-dependent (24).

Biological significance of SLCMA findings
DNAm at top CpGs was weakly correlated across blood
and brain
To examine the relevance of SEP-related DNAm pattern identified
in peripheral blood tissues to brain health, we examined the
correlation of DNAm at the top 62 CpGs in blood and brain sam-
ples, using data from the Blood Brain DNA Methylation Compar-
ison Tool (http://epigenetics.essex.ac.uk/bloodbrain) (33). Overall,
DNAm was weakly, but positively, correlated between blood and
brain regions (Supplementary Material, Table S8) (prefrontal cor-
tex: ravg = 0.06; entorhinal cortex: ravg = 0.10; superior temporal
gyrus: ravg = 0.08; cerebellum: ravg = 0.09). Some top CpGs showed
particularly strong correlations between blood and brain (e.g.
cg24938210, r = 0.78 to 0.81 across brain regions).

Distinct biological pathways emerged across SEP indicators
The top 62 CpGs showed no significant differences in distributions
of genomic features, CpG island locations or enhancers, as com-
pared to all tested CpGs (Chi-squared tests P > 0.05, Supplemen-
tary Material, Fig. S6).
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Figure 2. Mobility and sensitive period hypotheses were most often selected among the top 62 CpGs linked with socioeconomic adversity (or
socioeconomic position, SEP) that explained > 3% variance in DNA methylation (DNAm). (A) Frequency at which each life-course hypothesis was
selected among the 62 CpGs. For job loss and income reduction, we tested accumulation and sensitive period hypotheses, and middle childhood
was the most selected hypothesis. For the other four socioeconomic adversities, we tested accumulation, sensitive period and mobility hypotheses.
Mobility hypotheses, specifically worsening SEP, were most selected. Very early, Early and Middle refer to sensitive period hypotheses related to the
three childhood periods: very early (0–2 years), early (3–5 years) and middle childhood (6–7 years). Early worsening/improvement refers to mobility
hypotheses for changes between very early and early childhood, and later worsening/improvement refers to mobility hypotheses for changes between
early and middle childhood. (B) For the four CpGs associated with neighborhood disadvantage at an FDR < 0.05, SEP mobility group implied by the selected
mobility hypothesis showed the greatest shift in DNAm. The distribution of DNAm by SEP mobility group is shown in boxplots, where the center line
indicates the median, box limits indicate the 25th and 75th percentiles, whiskers extend up to 1.5 inter-quartile range (IQR) from the box limits and
individually plotted data points were values further than 1.5 IQR from the box limits. SEP mobility group was defined based on the exposure status
at two consecutive childhood periods (very early and early, or early and middle) involved in the mobility hypothesis chosen for each CpG; persistently
low was defined as being exposed to socioeconomic adversity during both periods; worsening SEP was defined as being unexposed during the former
period but exposed during the later period; improving SEP was defined as being exposed during the former period but unexposed during the later period;
persistently high was defined as being unexposed to socioeconomic adversity during both periods.

Gene set enrichment showed that SEP-related DNAm patterns
were more likely to occur within or near genes involved in neu-
ral system regulation, developmental processes, immune func-
tions, metabolic processes, substance localization and membrane
transport (Supplementary Material, Fig. S7, Supplementary Mate-
rial, Fig. S8). However, there was little overlap observed in the
significant gene ontology (GO) terms across SEP indicators (Sup-
plementary Material, Fig. S7), except for one GO term (morphogen-
esis of a branching epithelium), which emerged in the enrichment
analysis for both financial hardship and major financial problem.
These findings suggest different socioeconomic adversities may
lead to shifts in distinct biological pathways.

Discussion
The main finding from this study was that changes in the socioe-
conomic environment may coincide with subsequent changes at
a biological level as measured through DNAm signatures. Reports
of a change in the socioeconomic environment, particularly wors-
ening neighborhood quality (i.e. mobility) and parental job loss
during middle childhood (i.e. sensitive period), were associated,
on average, with a 3.8% difference in DNAm levels. These patterns
were detected even after accounting for other dimensions of the
socioeconomic environment, ancestry, DNAm levels at birth and
genetic variation. To our knowledge, this study is the first to

evaluate the role of socioeconomic changes in relation to
epigenome-wide DNAm within childhood.

Our study extends prior literature on the effects of childhood
SEP, providing new insights into the biological embedding of the
socioeconomic environment. Only three studies to our knowledge
have examined the relationship between socioeconomic mobility
and DNAm (22, 34, 35). Each of these three studies included just
two timepoints of SEP measures, one in childhood and another
in adulthood, and only assessed DNAm in adulthood. Our results
suggest that acute changes in children’s socioeconomic envi-
ronment, compared to exposure to more stable socioeconomic
adversity, might play a role in shaping DNAm profiles in childhood
as early as age 7. Although our study is the first to measure
the impact of exposure to socioeconomic changes on DNAm
levels in childhood, our results parallel previous findings on
SEP-related outcomes in the child development literature. For
example, non-epigenetic studies focused on other SEP-related
outcomes in childhood have shown that an episode of parental
job loss may have a larger impact on child health and behavior
than stable employment in low-income jobs (36–38). Indeed,
the developmental literature largely suggests that children
benefit from stable, predictable environments (39–41) and that
changes in the socioeconomic environment can impact cognitive
development and other mechanisms implicated in future risk
of health and behavioral problems (36–38, 42, 43). Future
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studies are needed to replicate our findings and investigate how
SEP-associated DNAm alterations may influence subsequent
health and behavioral outcomes. Insights from such studies
will be critical to discern whether SEP-related DNAm changes
influence children’s vulnerability to disease and other negative
health/behavioral outcomes.

We found more evidence for the importance of the develop-
mental timing of SEP on DNAm rather than its accumulation.
These results parallel previous findings from the ALSPAC cohort
(24) and elsewhere (44), suggesting that sensitive period effects
can be detected in the epigenome. Our results also specifically
point to the importance of middle childhood as a potential sensi-
tive period when the socioeconomic environment might be par-
ticularly impactful. SEP plays an important role during school-
age years (39, 45), corresponding to our middle childhood time
period findings, when children in the cohort began school. Socioe-
conomic disruptions during school-age years may lead to changes
in parent–child interactions, afterschool care center attendance
or extracurricular activities.

Consistent with prior epigenome-wide studies (21, 22), we
found little overlap between the top CpGs across SEP domains,
suggesting that various aspects of the SEP construct may trigger
distinct mechanisms that lead to different alterations in DNAm
patterns (19, 46). Across our six SEP indicators, the greatest
number of detected CpGs (17 of 62) were related to neighborhood
disadvantage, with 4 being the only CpGs to pass an FDR < 0.05
significance threshold. These findings point to the important role
that neighborhood-level indicators, including more ubiquitous
social and physical exposures experienced daily by larger
segments of a population, may play in shaping the epigenome
during child development. For example, we found that the DNAm
alterations linked to neighborhood disadvantage were more
likely to occur in genes related to peroxisomes, which are a key
component of the biological response to various environmental
pollutants (47). By contrast, we found that experiences of
financial hardship (e.g. difficulty in affording common household
necessities like food, clothing, heat and rent) and income reduc-
tion were linked to biological pathways related to diet quality,
such as nutrient transport and metabolic processes. Overall,
different clusters of biological pathways emerged across distinct
DNAm-associated SEP domains, suggesting that socioeconomic
adversities may affect child health through multiple mechanisms.

Many of the genes in which our top CpGs were located on or
near have been linked to human health and diseases. For example,
OAS3, in which our most significant CpG (cg20102336) resides,
encodes an enzyme that plays a critical role in innate antiviral
response (48) and has been linked with the incidence and severity
of illness caused by coronavirus disease 2019 (COVID-19) (49, 50).
TGFBR3, the nearest gene to another significant CpG (cg08638097),
encodes a key receptor in the transforming growth factor-β (TGF-
β) superfamily signaling pathways and has been implicated in
various human cancers including prostate cancer and bladder
cancer (51–54). Furthermore, one of the top CpGs showing strong
evidence of replication across studies (cg24121967; same direction
of effect and P < 0.05 in 8 and 3 other studies, respectively) was
located in a putative oncogene MYEOV whose overexpression
has been documented in many cancers such as gastric cancer
(55), myeloma (55) and pancreatic cancer (56). These findings
suggest that early life socioeconomic adversities are associated
with biological disruptions that may ultimately lead to a wide
constellation of health risks later in life.

While the current study uncovered many insights into SEP and
DNAm associations, a major unanswered question is whether

these DNAm changes are adaptive or maladaptive, in both the
short- and long-term. Teicher and others have noted that early
neurobehavioral changes that occur in response to experiences
of childhood adversity often enhance immediate survival at the
cost of long-term functioning (57). Thus, are specific epigenomic
fluctuations in the face of family socioeconomic adversity reflec-
tive of increased risk, resilience or both? Although we found
DNAm differences when comparing children who were exposed
vs. unexposed to socioeconomic adversity, we do not know if these
SEP-induced shifts represent systemic alterations of biological
functions across tissue types, which may cause key impairments
that lead to behavioral changes and increase disease risks. With
existing publicly available data, we could only compare the poten-
tial implications of our findings to DNAm levels in brain tissue.
Additional research comparing DNAm levels between different
tissues is warranted to better understand the systemic effects of
socioeconomic hardship.

Should these DNAm markers of socioeconomic adversity be
replicated and identified as harmful (rather than adaptive) to
health, our findings suggest at least two paths forward for pre-
vention and intervention. First, our results suggest that children
and families, especially lower-income families who may lack a
safety-net to draw from during times of parental job loss or
other socioeconomic transitions (58), might benefit from extend-
ing policies and social programs aimed at minimizing socioeco-
nomic instability, such as the Supplemental Nutrition Assistance
Program (59) and the American Families Plan (60). Second, pre-
vention programs aimed at promoting socioeconomic stability
during childhood might benefit from adopting a multisystemic
approach that considers the social determinants of health (61) at
multiple levels (62). In fact, interventions at the household-level
(e.g. parenting-based) and neighborhood-level (e.g. community-
based) have revealed measurable biological impacts on children’s
DNAm profiles (63, 64) and on other biomarkers (65–67).

The current study should be interpreted in light of several lim-
itations. First, like other epigenome-wide studies of this sample
size, we identified few specific CpGs passing a stringent correction
for multiple testing. However, following the recent movement to
move beyond P-value thresholds alone (68, 69), we explored the
patterns and implications of SEP-related DNAm profiles among
top CpGs passing an effect-size-based threshold. The top CpGs
passing this threshold were robust to various sensitivity analy-
ses, and there was consistent evidence for the patterns of CpGs
observed, with the majority showing effects in the same direc-
tion as previously published findings and two CpGs showing
significance in other studies after correcting for multiple test-
ing. Nevertheless, the results from individual CpGs should be
interpreted with caution and validated in larger samples. Second,
because this was a population-based sample, extreme cases of
socioeconomic disadvantage were likely underrepresented in the
ALSPAC cohort. Our results suggest that more severe forms of
adversity may have more potent effects, as we identified most
top DNAm CpGs (32 out of 62) from the two socioeconomic
adversities that showed the lowest prevalence (job loss and neigh-
borhood disadvantage). Future research in populations with more
diverse SEP distributions capturing a wider gradient (i.e. extreme
poverty) will help fully disentangle the impact of SEP on DNAm
patterns. Third, the ALSPAC cohort is mostly White, which lim-
its generalizability of these findings to other individuals and
populations of non-European descent. Prior studies (see review
(70)) show ancestry-related variation in DNA methylation that
may lead to differences in gene regulation across populations.
Thus, future replication efforts are needed in more diverse and
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representative populations. Finally, this study was observational
and based on self-report measures of SEP, which could have been
influenced by reporter bias, wherein participant responses may
have been shaped by factors like social desirability or recall biases,
leading to over- or underestimates of observed associations (71).
Although self-reporting bias is common among survey/question-
naire data in observational studies, previous research has shown
that individual-level SEP measures like education and income,
compared to more objective measures assessed at the census
tract-level, can more accurately capture the impact of SEP on a
number of health outcomes, such as blood pressure and height
(72). Future randomized experiments will help determine the
causal effect of socioeconomic adversity on DNAm.

In summary, this study adds to a growing literature showing
that early-life socioeconomic adversity can leave biological mem-
ories in the form of DNAm differences in childhood. Uniquely,
our findings on socioeconomic mobility and instability suggest
changes in the socioeconomic environment during childhood are
especially impactful and associated with epigenetic disruptions
related to various health outcomes. Ultimately, these findings
will enable researchers to build toward better intervention and
prevention efforts aimed at reducing socioeconomic disparities
and promoting health across the life course.

Materials and Methods
Sample and procedures
Data came from the Accessible Resources for Integrated Epige-
nomics Studies (ARIES) (73), a subsample of 1018 mother–child
pairs from the ALSPAC. ALSPAC is a prospective, longitudinal
birth cohort in the UK designed to investigate genetic and
environmental determinants of health across the lifespan (74–76).
Women living in the county of Avon, UK, with estimated delivery
dates between April 1991 and December 1992 were invited to
participate. Mother–child pairs in the ARIES were randomly
selected from ALSPAC based on availability of DNA samples across
five waves of data collection (73). We analyzed data from 946
singletons in ARIES with blood-based DNAm profiles generated
at age 7. Ethical approval for the study was obtained from the
ALSPAC Ethics and Law Committee and the Local Research Ethics
Committee. Note that the ALSPAC study website contains details
of all the data that is available through a fully searchable data
dictionary and variable search tool (http://www.bristol.ac.uk/
alspac/researchers/our-data). See Supplemental Methods for full
ALSPAC details.

Measures
Early-life socioeconomic position (SEP)
We analyzed six SEP indicators, spanning financial, occupational
and residential domains: 1) job loss, 2) income reduction, 3) low
family income, 4) financial hardship, 5) major financial problem
and 6) neighborhood disadvantage. These were the only avail-
able, time-varying SEP indicators that were measured repeatedly
via maternal report through mailed questionnaires during three
developmental time periods (Fig. 1A): very early childhood (0–
2 years), early childhood (3–5 years) and middle childhood (6–
7 years).

For each SEP indicator, children were classified as exposed
or unexposed at each period, using criteria described in Supple-
mental Methods (Supplementary Material). With these repeated,
self-reported SEP indicators, we could identify changes occurring
between time-periods for indicators capturing time-varying
status of SEP. For job loss and income reduction, the measures

inherently captured change within a certain developmental
period, because they asked about socioeconomic mobility. To
distinguish job loss and income reduction from other indicators,
we refer to them throughout the manuscript as ‘instability
indicators’.

DNA methylation (DNAm)
DNAm was measured from peripheral blood at age 7 using the
Illumina Infinium HumanMethylation450 BeadChip microarray
(Illumina, San Diego, CA). DNAm wet laboratory procedures, pre-
processing analyses and quality control are described in Sup-
plemental Methods (Supplementary Material). A total of 412 956
CpGs on autosomal chromosomes passed quality control and
were included in this analysis. For each CpG, DNAm level is
expressed as a ‘beta’ value (β-value) ranging from 0 to 1, which
represents the proportion of cells methylated at each interro-
gated CpG.

Covariates
To adjust for baseline demographic differences in ARIES and
technical variation in DNAm assessment, we controlled for the
following variables measured at birth in all analyses: child age in
months at blood draw, child race/ethnicity, child sex, child birth-
weight, maternal age, number of previous pregnancies, sustained
maternal smoking during pregnancy and cell type proportions
estimated using the Houseman method (77). Details can be found
in the Supplemental Methods (Supplementary Material).

Data analysis
All analysis code is available through our GitHub page: https://
github.com/thedunnlab/sep-dnam.

Structured life-course modeling approach
We used the two-stage structured life-course modeling approach
(SLCMA) (30–32) to evaluate the time-dependent effects of socioe-
conomic adversity on DNAm. SLCMA is a method that lever-
ages repeated exposure data to simultaneously investigate the
relationship between exposure and outcome under multiple a
priori-defined life-course hypotheses. In our analyses, we tested
three life-course hypotheses, described previously, which were
parameterized as follows (Fig. 1B).

First, to test the accumulation hypothesis, we created a sum
score (ranging from 0 to 3), which captured the number of time
periods across the three developmental stages that children were
exposed. Second, to test the sensitive period hypothesis, we cre-
ated three binary variables, one for each of the three developmen-
tal periods, to classify children’s exposure status (0 = unexposed
during the period; 1 = exposed during that period). Third, to test
the mobility hypothesis, we created a pair of indicator variables
for change in SEP between very early and early childhood, and a
pair of indicator variables for change in SEP between early and
middle childhood. Each pair consisted of an indicator variable for
worsening (1 = change from unexposed to exposed, 0 = other) and
an indicator variable for improvement (1 = change from exposed
to unexposed, 0 = other).

We tested all three hypotheses for low family income, financial
hardship, major financial problem and neighborhood disadvan-
tage. Only the accumulation and sensitive period hypotheses were
tested for job loss and income reduction, as these two instability
indicators inherently reflect SEP changes (Supplementary Mate-
rial, Table S4).

We performed the SLCMA in two stages: 1) life-course hypothe-
sis model selection followed by 2) post-selection inference (Fig. 1B,
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Supplemental Methods). In the first stage, we tested the variables
described above using a Least Angle Regression (LARS) variable
selection procedure (78) to identify the life-course hypothesis
most supported in the observed data (i.e. explaining the most vari-
ation in DNAm). In the second stage, we used selective inference
(30, 79) to test the association between the selected variable and
DNAm and estimate confidence intervals.

Defining CpGs of interest
We used two thresholds to identify associations between SEP
and CpG CpGs for further investigation. Given recent recom-
mendations discouraging the use of P-values alone for statisti-
cal inference (68, 69), we used an effect-size-based threshold of
R2 > 3%, meaning that the SEP exposure explained more than
3% of the variance in DNAm. This cutoff was selected based on
the effect sizes observed in previous epigenome-wide analyses of
childhood adversity in ALSPAC (24, 26) and other well-established
environmental exposures, including tobacco smoking (80). We
also performed multiple-testing correction using the Benjamini-
Hochberg method (81) at a 5% FDR to assess the significance of
top CpGs.

Sensitivity analyses
We conducted three sensitivity analyses to evaluate the robust-
ness of our SLCMA results. First, we additionally controlled for
1) time-invariant SEP indicators (e.g. maternal education at base-
line), 2) population substructure estimated from epigenetic data,
3) cord blood DNAm (to account for differences in DNAm that
might have been present at birth), 4) genetic variation (at methy-
lation quantitative trait loci, or mQTL) or 5) exposure to the other
five time-varying SEP indicators. Second, we reran the analyses
of the CpGs with an R2 > 3% for low family income, financial
hardship, major financial problem and neighborhood disadvan-
tage using only accumulation and sensitive period hypotheses
and compared the results from analysis with and without mobility
tested. Third, we performed an EWAS of any exposure to each
type of SEP adversity before age 7 and DNAm and compared
the findings with SLCMA results. See (Supplemental Methods,
Supplementary Material) for details.

Secondary analyses
To interpret our findings and place them in the context of prior
literature, we conducted two secondary analyses. First, we com-
pared the effect estimates of R2 > 3% CpGs to those reported in
previous SEP-related EWAS studies (19) (Supplemental Methods,
Supplementary Material). Second, we also evaluated the biological
significance of our findings by examining the correlation between
DNAm in blood and brain tissue for the R2 > 3% CpGs and testing
for the enrichment of genomic features, regulatory elements and
Gene Ontology (GO) terms (Supplemental Methods, Supplemen-
tary Material).

Supplementary material
Supplementary Material is available at HMG online.
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SUPPLEMENTAL METHODS 1 

 2 

Sample and procedures 3 

This current study used data from the Accessible Resources for Integrated Epigenomics 4 

Studies (ARIES) (1), a subsample of 1,018 mother-child pairs from the Avon Longitudinal Study 5 

of Parents and Children (ALSPAC). ALSPAC is a prospective, longitudinal birth-cohort in the 6 

United Kingdom (UK) designed to investigate the genetic and environmental determinants of 7 

health across the lifespan (2-4). Women living in the county of Avon, UK with estimated 8 

delivery dates between April 1991 and December 1992 were invited to participate. 9 

Approximately 85% percent of eligible pregnant women (N=14,541) agreed to participate and 10 

were enrolled, which resulted in 14,062 live births and a sample size of 13,988 children alive at 1 11 

year of age. Response rates to ALSPAC data collection have been good (75% have completed at 12 

least one follow-up).  13 

Mother-child pairs in the ARIES were randomly selected from ALSPAC based on 14 

availability of DNA samples across five waves of data collection (1). We used data from 946 15 

singletons in ARIES with blood-based DNA methylation (DNAm) profiles generated at age 7.  16 

Ethical approval for the study was obtained from the ALSPAC Ethics and Law 17 

Committee and the Local Research Ethics Committee. Please note that the ALSPAC study 18 

website contains details of all the data that is available through a fully searchable data dictionary 19 

and variable search tool (http://www.bristol.ac.uk/alspac/researchers/our-data/).  20 

Measures 21 

Early-life socioeconomic position (SEP)  22 
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Considering the multidimensional nature of socioeconomic position (SEP) and that 23 

different indicators of SEP can have distinct relationships with DNAm (5), we analyzed six SEP 24 

indicators, spanning financial, occupational, and residential domains. Since repeated 25 

measurements were required for testing different life course hypotheses, these SEP indicators 26 

were chosen also because they were measured at least once in each of the following three 27 

developmental time periods: very early childhood (0-2 years), early childhood (3-5 years), and 28 

middle childhood (6-7 years). These time periods are consistent with previous ALSPAC and 29 

other research studies (6-9), roughly corresponding to three major developmental stages 30 

(infancy/toddlerhood, pre-school, and school-age) where different early-life policies and 31 

interventions could occur. For SEP indicators assessed more frequently, we collapsed the 32 

timepoints so children were classified as exposed to socioeconomic adversity within the time 33 

period if they were exposed on at least one occasion within that given time period (Figure 1a). 34 

Children were classified as exposed using criteria defined below for each construct. Additionally, 35 

we excluded the following SEP measures that were stable over time because of insufficient 36 

variation across childhood periods needed for the variable selection in SLCMA: maternal 37 

education, maternal marital status, maternal home ownership, maternal ever homelessness, and 38 

Townsend Deprivation Index. These SEP variables were, however, examined as additional 39 

covariates in a sensitivity analysis. The six SEP indicators included in our main are described 40 

below.  41 

 42 

1. Job loss. Mothers indicated job loss for themselves and/or their partner and the extent to which 43 

it affected them on six occasions after birth (when the child was age 8 weeks, 8 months, 1.75, 44 

2.75 years, 4 years, 5 years, and 6 years). This indicator was assessed on a Likert-type scale 45 
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ranging from: 1 = ‘yes & affected me a lot’; 2 = ‘yes, moderately affected’; 3 = ‘yes, mildly 46 

affected’; 4 = ‘yes, but did not affect me at all’; 5 = ‘no, did not happen’. At each time point, 47 

children were coded as exposed if their mothers reported yes to an event which at least mildly 48 

affected the family (corresponding to response options 1 to 3 on a 5-point scale, with a lower 49 

score reflecting a greater effect). 50 

 51 

2. Income reduction. Mothers indicated the extent to which a reduction in income in the previous 52 

year affected them on seven occasions after birth (when the child was age 8 weeks, 8 months, 53 

1.75 years, 2.75 years, 4 years, 5 years, and 6 years). This indicator was assessed and coded in 54 

the same way as job loss, as noted above. 55 

 56 

3. Low family income. Mothers reported how much their average take home family income was 57 

per week (<£100, £100 - £199, £200 - £299, £300 - £399, £400+) at three occasions after birth 58 

(when the child was age 2.75 years, 4 years, and 7 years). Children were coded as exposed if 59 

their reported family income was in the two lowest income categories (<£100, £100 - £199). This 60 

cut-off is consistent with the official average weekly income threshold (i.e., £190 before housing 61 

costs) for households living in relative low income as published by the Department for Work and 62 

Pensions in its most recent Households Below Average Income (HBAI) report (10). 63 

 64 

4. Financial hardship. Mothers indicated the extent to which the family had difficulty affording 65 

the following: 1) items for the child; 2) rent or mortgage; 3) heating; 4) clothing; 5) food. Each 66 

of the 5 items was coded on a Likert-type scale (1=not difficult; 2=slightly difficult; 3=fairly 67 

difficult; 4=very difficult). These items were completed at five occasions after birth (when the 68 
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child was age 8 months, 1.75 years, 2.75 years, 5 years, and 7 years). At 1.75 years, 2.75 years, 69 

and 5 years, a fifth response option was added to some of the items: 5=paid directly by social 70 

security. At 7 years, a fifth response option was added to all five items: 5=don’t pay for this. In 71 

order to make categories consistent and comparable across occasions, we estimated the difficulty 72 

level on the 4-point scale for participants who selected the fifth option (indicating an undefined 73 

level of perceived financial hardship) using multiple imputation. We included all SEP indicators 74 

and covariates in the imputation, and assigned the rounded mean based on 51 imputation datasets 75 

as the imputed difficulty level. We chose an odd number of imputations in order to compare the 76 

imputation results between using the mean or the median as the imputed value, and found little 77 

difference between the two approaches. Children were coded as exposed if their mothers 78 

reported at least fairly difficult for three or more items at each time point (corresponding to 79 

response option 3 to 4 on a 4-point scale, with a higher score reflecting more difficulty).  80 

 81 

5. Major financial problem. Mothers indicated the extent to which a major financial problem 82 

affected them on four occasions after birth (when the child was age 8 months, 2.75 years, 5 83 

years, and 6 years). This indicator was assessed and coded in the same way as job loss, as noted 84 

above. 85 

 86 

6. Neighborhood disadvantage. On four occasions after birth (when the child was age 1.75 years, 87 

2.75 years, 5 years, and 7 years), mothers indicated the degree to which the following were 88 

problems in their neighborhood: 1) noise from other homes; 2) noise from the street; 3) garbage 89 

on the street; 4) dog dirt; 5) vandalism; 6) worry about burglary; 7) mugging; and 8) disturbance 90 

from youth. Response options to each item were: 0=not a problem or no opinion, 1=minor 91 
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problem, 2=serious problem. Items were summed, yielding scores ranging from 0-16. Children 92 

with scores of eight or greater, which generally corresponded to the 95th percentile, were 93 

classified as exposed to neighborhood disadvantage. 94 

 95 

DNA methylation (DNAm)  96 

As described elsewhere (1, 11), DNA extracted from peripheral blood (whole blood or 97 

buffy coat). DNAm was measured at 485,577 CpG dinucleotide sites across the genome using 98 

the Illumina Infinium HumanMethylation450 BeadChip microarray, which captures DNAm 99 

variation at 99% of RefSeq genes (17 CpG sites per gene, on average). Consent for biological 100 

samples was collected in accordance with the Human Tissue Act (2004). See Relton et al. (2015) 101 

for details about the laboratory procedures (1). 102 

The proportion of molecules methylated at each interrogated CpG site on the array was 103 

detected using the microarray. The estimated level of DNAm at each CpG sites was expressed as 104 

a “beta” value (𝛽), defined as the ratio of the intensity measured by the methylated probe and the 105 

sum of the overall intensity and a recommended offset value 𝛼 = 100 (𝛽 = intensity of the 106 

Methylated allele (M) / (intensity of the Unmethylated allele (U) + intensity of the Methylated 107 

allele (M) + 100)). The 𝛽 value ranges from 0 (no methylated dinucleotides observed) to 1 (all 108 

dinucleotides methylated). Background correction and functional normalization were applied to 109 

the raw methylation 𝛽-values using the R-package meffil, a pipeline developed by Min and 110 

colleagues to remove or minimize the effects of variation due to technical artifacts. Cross-111 

hybridizing probes (both autosomal and XY-binding), polymorphic probes, and probes located in 112 

sex chromosomes were further excluded from analysis. A total of 412,956 CpGs on autosomal 113 

chromosomes passed QC and were included in this analysis. To limit the impact of extreme 114 
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values, we winsorized the beta values (i.e., values that represent % methylation) at each CpG 115 

site, setting the bottom 5% and top 5% of values to the 5th and 95th quantile, respectively. 116 

Additionally, we estimated the proportions of the six white cells in the whole blood (CD8 117 

T cells, CD4 T cells, NK cells, B cells, monocytes, and granulocytes) using Houseman’s method 118 

(12). Estimated cell proportions were included in all analyses to correct for cell type 119 

heterogeneity.  120 

The gene symbol of and distance to the nearest gene to each CpG were obtained from the 121 

FDb.InfiniumMethylation.hg19 package in R (13). Genomic features including genomic 122 

location, relation to CpG islands (CGIs), and enhancers were obtained from Illumina 123 

HumanMethylation450 v1.2 Manifest File 124 

(https://support.illumina.com/array/array_kits/infinium_humanmethylation450_beadchip_kit/do125 

wnloads.html). 126 

Covariates  127 

To adjust for baseline demographic differences in the cohort, we controlled in the main 128 

analyses for the following variables measured at birth: child race/ethnicity (0=non-White, 129 

1=White); child sex (0=male, 1=female); child birth weight; maternal age (0=ages 15-19, 1=ages 130 

20-35, 2=age>35); number of previous pregnancies; and sustained maternal smoking during 131 

pregnancy (0=non-smoker, 1=smoker in two or more trimesters, including the third trimester). 132 

Because age is a strong predictor of DNAm (14) and the actual time of blood draw at the age 7 133 

time-point varied across children, we also adjusted for child age in months at the time of blood 134 

draw (ranging from 85 to 109 months, median=89 months). We also adjusted for cell proportions 135 

estimated using the Houseman method (12) to account for cell type heterogeneity. 136 

https://support.illumina.com/array/array_kits/infinium_humanmethylation450_beadchip_kit/downloads.html
https://support.illumina.com/array/array_kits/infinium_humanmethylation450_beadchip_kit/downloads.html
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In secondary analyses, we additionally controlled for time-invariant SEP indicators, 137 

population substructure, cord blood DNAm, and genetic variation to evaluate the robustness of 138 

our findings (see Additional covariate adjustments section below).  139 

Data analysis  140 

We used a two-stage structured life course modeling approach (SLCMA) (15-17) to 141 

investigate the time-dependent relationship between socioeconomic adversity and DNAm across 142 

three life-course hypotheses. SLCMA was performed in two stages: model selection followed by 143 

post-selection inference. 144 

In the first stage, a set of hypotheses were encoded and entered into a model selection 145 

procedure (Figure 1b). The three life-course hypotheses tested in this analysis were 146 

parameterized as follows. 147 

1) Accumulation hypothesis, in which the effect of low-SEP increases with the number 148 

of periods exposed, regardless of timing. Formally, for the kth period (k=1 for very 149 

early childhood, k=2 for early childhood, k=3 for middle childhood), Xk=1 if exposed 150 

to the specific adversity during the kth period, and Xk=0 if not exposed; then the 151 

accumulation hypothesis was coded as X1 + X2 + X3.  152 

2) Sensitive period hypotheses, in which the effect of low-SEP depends on the 153 

developmental time period of the exposure. We tested three sensitive period 154 

hypotheses, one for each childhood period, and the encoded variable was Xk for the 155 

kth period (k=1,2,3). 156 

3) Mobility hypothesis, in which DNAm is associated with an upward or downward 157 

change in SEP between adjacent developmental time periods. We tested two 158 

improvement hypotheses and two worsening hypotheses: improvement in SEP 159 



 

 

8 

 

between kth and (k+1)th period (k=1,2) was coded as Xk*(1- Xk+1); worsening in SEP 160 

between kth and (k+1)th period (k=1,2) was coded as (1- Xk)*Xk+1. 161 

For each SEP indicator, variables encoding the theoretical hypotheses were entered into 162 

the Least Angle Regression (LARS) variable selection procedure (18) to identify the variable 163 

explaining the most variability in DNAm at each CpG (R2), meaning the hypothesis most 164 

supported by the data. We focused only on the first variable selected to maximize statistical 165 

power and prioritize parsimonious explanations (15). For each CpG, six unique hypotheses were 166 

selected, corresponding to each SEP indicator.  167 

In the second stage, we performed post-selection inference to test the association between 168 

the selected hypothesis and DNAm as well as estimate confidence intervals. We used selective 169 

inference (19), which was recommended for high-throughput applications of the SLCMA (15).  170 

We controlled for baseline demographic variables, child age at blood draw, and cell type 171 

proportions in both stages of the analysis. We implemented the Frisch-Waugh-Lovell (FWL) 172 

Theorem (20-22) to adjust for covariates: first, encoded hypotheses and DNAm were separately 173 

regressed on the covariates; then we applied LARS with residuals from the regressions. It has 174 

been shown that this approach gives the same effect estimates as a fully adjusted linear model 175 

where covariates are included in the regression model directly (23), while it can improve 176 

statistical power and overcome bias. We performed complete-case analysis, meaning that only 177 

samples with non-missing exposures and covariates were included in the analysis.  178 

Sensitivity analyses 179 

We conducted three sensitivity analyses to evaluate the robustness of our top results 180 

(R2>3%) in the primary analysis.  181 

 182 
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Additional covariate adjustments 183 

We reran the SLCMA analysis for the top CpGs adjusting for additional covariates 184 

described below to evaluate the possibility of remaining distortions in the identified SEP-DNAm 185 

associations (or residual bias). We did not include these variables in main analysis, because prior 186 

studies have shown that covariate adjustment may substantially shift the results of DNAm-based 187 

analyses (7, 24); thus, a stepped approach could enable better detection of signal when the role of 188 

the covariate in the SEP-DNAm association is unclear, and avoid reducing sample size based on 189 

missing covariate data. 190 

1) Time-invariant SEP indicators. We examined how our findings were influenced by 191 

the adjustment of SEP indicators that were relatively stable throughout childhood. 192 

These time-invariant SEP indicators were moderately correlated to the time-varying 193 

SEP indicators examined in the main analysis (average correlation with SEP 194 

exposures ranged from 0.20 to 0.47 in absolute values). Further controlling for these 195 

indicators allowed us to evaluate the robustness of our findings in response to 196 

invariant aspects of the socioeconomic environment. These invariant SEP indicators 197 

included: maternal education (1=less than O-level, 2=O-level, 3=A-level, 4=Degree 198 

or above); maternal marital status (0=never married, 1=widowed/divorced/separated, 199 

2=married ); maternal home ownership (0=owning, 1=rented); maternal ever 200 

homelessness (0=no, 1=yes); Townsend Deprivation Index (an indicator of 201 

neighborhood deprivation via Census data, ranging from 1-5 corresponding to the five 202 

quintiles). We adjusted for each of the time-invariant SEP indicators in a separate 203 

model, and also ran a model adjusted for all of them.  204 
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2) Population substructure. To assess if our results were biased by population 205 

substructure in the sample, we further adjusted for the top four epigenetic principal 206 

components (PCs). Although children included in the ARIES sample are primarily 207 

White, subtle substructure in the sample may still possibly bias the analysis. Bias may 208 

arise if ancestry is associated with both DNAm pattern (e.g. through genetic factors) 209 

and exposure to socioeconomic adversities (e.g. through different geographic 210 

locations of ancestors) (25). Therefore, we inferred population structure based on 211 

epigenetic PCs estimated using the EPISTRUCTURE algorithm developed by 212 

Rahmani et al. (2017) (26), and further adjusted for the top four epigenetic PCs in a 213 

sensitivity analysis.  214 

3) Cord blood DNAm. To account for differences in DNAm that might have been 215 

present at birth (thus not caused by factors occurring postnatal), we further adjusted 216 

for cord blood methylation in the model for the top CpGs. Sample collection, 217 

laboratory procedures, and quality control for cord blood DNAm are described 218 

elsewhere (1, 11). Methylation beta values were normalized, corrected for cell count 219 

heterogeneity, and winsorized to remove outliers following the quality control for age 220 

7 DNAm as described above. 221 

4) Genetic variation. For CpGs associated with any methylation quantitative trait loci 222 

(mQTLs), based on a database of mQTLs of the ARIES cohort 223 

(http://www.mqtldb.org/) (27), we further controlled for genetic var iation at mQTLs 224 

linked to our top sites. We downloaded the list of mQTLs at age 7, and filtered the 225 

data to our top CpG sites. Children were genotyped using the Illumina HumanHap550 226 

quad chip; imputation was performed to the 1000 Genomes (phase 1, version 3, 227 

http://www.mqtldb.org/
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release Dec 2013) reference population using IMPUTE v2.2.2. Variants were filtered 228 

by minor allele frequency (MAF>0.01), Hardy-Weinberg equilibrium (HWE>5x10-7), 229 

and imputation quality (info>0.8); subjects were filtered by missing genotype rate 230 

(missingness<3%) and cryptic relatedness (r<0.1). For each top CpG with four or 231 

fewer associated SNPs, we included minor allele dosages as additional covariates. For 232 

each top CpG site with more than four associated SNPs, we filtered SNPs by call rate 233 

(>99%) and ran a principal components analysis among all SNPs associated with each 234 

CpG. The top four principal components were used as covariates to represent genetic 235 

variation in the sensitivity analysis. 236 

5) Exposure to other time-varying SEP indicators. Considering the moderate correlations 237 

among the six time-varying SEP indicators analyzed in our main analyses, we further 238 

investigated the extent to which the identified association between each SEP indicator 239 

and DNAm was explained by exposure to the other main SEP indicators. Specifically, 240 

we reran the SLCMA analysis for each of the top CpGs, while additionally adjusting 241 

for exposure to any of the five SEP indicators other than the one associated with the 242 

DNAm at the CpG (0=unexposed to any other five SEP indicators during any 243 

childhood periods, 1=ever exposed to at least one of the other five SEP indicators 244 

during one or more childhood periods). 245 

Analysis without mobility hypothesis 246 

While accumulation and sensitive periods have been previously examined for the 247 

association between SEP and DNAm (7), mobility within childhood has never been tested on 248 

DNAm. When additional hypotheses are added to the SLCMA, there is a cost in terms of 249 

statistical power for a fixed sample size. To better understand the value of adding mobility 250 



 

 

12 

 

hypotheses in the model selection procedure, which could help guide future analyses, we 251 

therefore reran the analyses of top CpGs for low family income, financial hardship, major 252 

financial problem, and neighborhood disadvantage using only accumulation and sensitive period 253 

hypotheses. We compared the results for the four SEP indicators from analysis with and without 254 

mobility tested. 255 

EWAS of exposed vs. unexposed to socioeconomic adversity  256 

We also performed epigenome-wide association studies (EWAS) of any exposure before 257 

age 7 and DNAm to evaluate the loss (or gain) of information from the SLCMA compared to 258 

more conventional approaches. For each SEP indicator, children were coded as ever-exposed 259 

(versus never-exposed) if they met the exposure criteria at one or more timepoints by age 7. We 260 

compared the detected CpGs in EWAS and SLCMA to determine how the two approaches were 261 

different in their findings. A mathematical proof is provided elsewhere (7) showing that when 262 

the true relationship between exposure and outcome depends on the timing or amount of 263 

exposure, a standard EWAS of lifetime exposure is underpowered compared to SLCMA.  264 

Secondary analyses 265 

We also conducted two secondary analyses to interpret our findings and place them in the 266 

context of prior literature. 267 

Compare to prior EWAS  268 

 We compared the result of our R2>3% CpGs to those identified from seven previous 269 

epigenome-wide DNAm studies on socioeconomic position (28-34), utilizing individual CpG-270 

level summary statistics reported in a recent review paper (5). In these seven studies, 271 

investigators analyzed indicators spanning five SEP domains: household assets, education, 272 

occupation, income, and aggregated composite measures. As some studies analyzed more than 273 
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one SEP domain or SEP at multiple life stages, we included a total of 17 EWASs from the seven 274 

studies. Focusing on the 62 CpGs with R2>3%, we then compared our results to these prior 275 

EWASs to evaluate: 1) the extent to which our effect estimates were in the same direction; 2) 276 

whether they presented statistical evidence in those previous studies at the nominal significance 277 

level (p<0.05) and at FDR<0.05 (multiple testing correction was performed within each EWAS 278 

separately by the aforementioned review paper).  279 

Exploring the biological significance of the top CpGs 280 

DNAm correlation across blood and brain. To examine the relevance of SEP-related DNAm 281 

pattern identified in peripheral blood tissues to brain health, we used a publicly available 282 

database that compare DNAm in peripheral blood tissue and brain tissue. The Blood Brain DNA 283 

Methylation Comparison Tool (http://epigenetics.essex.ac.uk/bloodbrain/) (35) includes DNAm 284 

levels in whole blood and four brain regions (prefrontal cortex (PFC), entorhinal cortex (EC), 285 

superior temporal gyrus (STG), and cerebellum (CER)) in N = 71–75 matched samples from 286 

individuals archived in the MRC London Neurodegenerative Disease Brain Bank. This sample 287 

includes both neuropathologically unaffected controls and individuals with variable levels of 288 

neuropathology. Pearson correlation r values measuring the blood-brain correlations were 289 

retrieved from this database.  290 

Enrichment of genomic features and regulatory elements. We examined whether the locations of 291 

the R2>3% CpGs were enriched in certain genomic regions (e.g., gene body, UTR regions, etc.), 292 

CGI and CGI flanking regions (CGI shore, 0–2 kb from CGI; CGI shelf, 2-4 kb from CGI), and 293 

enhancers. Annotations of these features were obtained for all R2>3% CpGs from the 294 

FDb.InfiniumMethylation.hg19 package in R (13). We tested if the genomic features were more 295 

http://epigenetics.essex.ac.uk/bloodbrain/
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common among the R2>3% CpG sites as compared to all CpGs tested across the epigenome 296 

using two-sided Chi-squared tests.  297 

Enrichment of biological pathways. Gene set enrichment analyses were conducted using the 298 

methylGSA package in R (36) to identify important biological pathways indicated by our 299 

SLCMA results. Epigenome-wide SLCMA results ranked by p-values were used in the gene set 300 

enrichment analyses, and Robust Rank Aggregation (37) was used to adjust for the number of 301 

CpG sites in each gene. Gene Ontology (GO) terms were tested, and Bonferroni method was 302 

used for multiple testing correction. 303 
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Figure S1. Prevalence of each indicator of socioeconomic position (SEP) or socioeconomic adversity, across the three developmental 
periods. Each panel shows for one of the six SEP indicators the percentage of exposed children (dark blue) and unexposed children 
(light blue) at three developmental periods as well as the change between periods. For all six SEP indicators, the prevalence of 
exposure decreased over time; the majority of unexposed children remained unexposed across periods, while exposed children tended 
to improve in their SEP over time. 
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Figure S2. Polychoric correlation between socioeconomic adversity pairs during (a) very-early childhood (0-2 years), (b) early 
childhood (3-5 years), and (c) middle childhood (6-7 years). The six socioeconomic adversities were moderately correlated during all 
three childhood periods (ravg=0.35 at very-early childhood, ravg=0.34 at early childhood, ravg=0.29 at middle childhood).
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Figure S3. Comparison of our results to previous EWAS for the 62 CpGs with R2>3%. The x-
axis shows the percentage of previous studies showing effects in the same direct (blue) and the 
proportion of previous studies showing p<0.05 (orange) for each CpG site. The y-axis shows the 
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CpG names with the number of previous EWAS analyses being compared to in the parentheses. 
Two CpGs passed multiple testing correction at an FDR<0.05 in previous EWAS: cg23685969 
was significantly associated with income in Bush et al. (2018) (in our analysis it was 
significantly associated with low family income); cg19260606 was significantly associated with 
education and an aggregated composite measure in McDade et al. (2019) (in our analysis it was 
significantly associated with major financial problem). See Supplementary Methods for more 
details about the studies included.
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Figure S4. Bar plots showing the number of CpGs across the epigenome selected by each life-

course hypothesis for each type of socioeconomic adversity. (a) For job loss and income 

reduction, we tested accumulation and sensitive period hypotheses. (b) For the other four 

socioeconomic adversities, we tested accumulation, sensitive period, and mobility hypotheses. 

Very early, Early, and Middle refer to sensitive period hypotheses related to the three childhood 

periods: very early (0-2 years), early (3-5 years), and middle childhood (6-7 years). Early 

worsening/improvement refer to mobility hypotheses for changes between very early and early 

childhood, and later worsening/improvement refer to mobility hypotheses for changes between 

early and middle childhood.
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Figure S5. Scatterplots showing that the structured life course modeling approach (SLCMA) 

was more powerful than a standard epigenome-wide association study (EWAS) at identifying 

time-dependent effect of socioeconomic adversity on DNA methylation (DNAm). This plot 

compares the effect of neighborhood disadvantage estimated by the SLCMA approach (y-axis) 

versus those estimated by the standard approach of EWAS (x-axis) of ever-exposure, for the 62 

CpGs associated with socioeconomic adversity explaining more than 3% variance in DNAm. 

The shaded area indicates where the effect estimates were in the same direction in SLCMA and 

EWAS, but larger in magnitude in SLCMA. The unshaded areas indicates where the effect 

estimates were greater in the EWAS or estimates were in opposite directions from two analyses. 

For 59 of the 62 CpGs (including the 4 FDR-significant CpGs), the estimated effects were 

stronger in SLCMA than in EWAS, regardless of the direction of effect. 
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Figure S6. The distribution of genomic features (a), CpG island (CGI) locations (b), and 

enhancer (c) in the 62 CpGs associated with socioeconomic adversity explaining more than 3% 

variance in DNAm (R2>3%, dark green) and all tested CpGs (n=412,956, yellow). TSS1500: 

within 1500 bp before the transcription start site of a gene. TSS200: within 200 bp before the 

transcription start site of a gene. CGI shore: 0–2 kb from CGI. CGI shelf: 2-4 kb from CGI. 
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Figure S7. Results of gene set enrichment analysis. Gene Ontology (GO) terms that showed p-values<0.001 are shown on the y axis. 

GO terms were colored by pathway type. The red lines indicate p-value thresholds based on Bonferroni correction. Little overlap in 

the top pathways was observed across SEP indicators, except for morphogenesis of a branching epithelium, which emerged in the 
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enrichment analysis for both financial hardship and major financial problem. These findings suggest different socioeconomic 

adversities may lead to shifts in distinct biological pathways.
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Figure S8. Clusters of biological pathways identified in the top 100 Gene Ontology (GO) terms of each SEP measure. GO terms are 

presented in cells whose size is proportional to the level of significance (-log(p)). Clusters of GO terms were determined by semantic 

similarity calculated by REVIGO (http://revigo.irb.hr). Clusters are labeled by the GO terms with the lowest p value within a cluster.

http://revigo.irb.hr/
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Table S1 (separate file). Distribution of covariates in the ALSPAC cohort (N=15,445) and in 

the ARIES subsample (N=946). 

Table S2 (separate file). Results of the SLCMA with annotation to the closest gene, for the 62 

CpGs linked to socioeconomic adversity explaining more than 3% variability in DNA 

methylation (R2>3%). 

Table S3 (separate file). Comparison to previous EWAS for the 62 CpG sites linked to 

socioeconomic adversity explaining more than 3% variability in DNA methylation (R2>3%). 

Table S4 (separate file). Summary of tested hypotheses by each socioeconomic adversity.   

Table S5 (separate file). Results of sensitivity analyses adjusting for additional covariates for 

the 62 CpG sites identified by SLCMA analysis (R2>3%). 

Table S6 (separate file). Results of sensitivity analysis controlling for genetic variation for 

R2>3% CpGs linked to mQTLs. 

Table S7 (separate file). Results of the sensitivity analysis excluding mobility hypotheses in 

SLCMA, for the R2>3% CpGs associated with four SEP indicators. 

 

Table S8 (separate file). Correlation of methylation between blood and four brain regions for 

the 62 CpGs with R2>3%
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