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Genetic patterning for child 
psychopathology is distinct from that 
for adults and implicates fetal cerebellar 
development

Dylan E. Hughes1, Keiko Kunitoki    2,17, Safia Elyounssi1,17, Mannan Luo    3,4,17, 
Oren M. Bazer1, Casey E. Hopkinson1, Kevin F. Dowling    1,5,6, Alysa E. Doyle2,7, 
Erin C. Dunn2,8,9,10, Hamdi Eryilmaz2, Jodi M. Gilman    2,11, Daphne J. Holt2,11, 
Eve M. Valera2, Jordan W. Smoller2,8,9,12, Charlotte A. M. Cecil13,14,15, 
Henning Tiemeier    13,16, Phil H. Lee8,9,18 & Joshua L. Roffman    2,11,18 

Childhood psychiatric symptoms are often diffuse but can coalesce into 
discrete mental illnesses during late adolescence. We leveraged polygenic 
scores (PGSs) to parse genomic risk for childhood symptoms and to 
uncover related neurodevelopmental mechanisms with transcriptomic 
and neuroimaging data. In independent samples (Adolescent Brain 
Cognitive Development, Generation R) a narrow cross-disorder 
neurodevelopmental PGS, reflecting risk for attention deficit hyperactivity 
disorder, autism, depression and Tourette syndrome, predicted psychiatric 
symptoms through early adolescence with greater sensitivity than 
broad cross-disorder PGSs reflecting shared risk across eight psychiatric 
disorders, the disorder-specific PGS individually or two other narrow 
cross-disorder (Compulsive, Mood-Psychotic) s co re s. N eu ro de ve lo pmental 
PGS-associated genes were preferentially expressed in the cerebellum, 
where their expression peaked prenatally. Further, lower gray matter 
volumes in cerebellum and functionally coupled cortical regions associated 
with psychiatric symptoms in mid-childhood. These findings demonstrate 
that the genetic underpinnings o    f p    e  d   i a   tric psychiatric symptoms differ 
from those of adult illness, and implicate fetal cerebellar developmental 
processes that endure through childhood.

Risk for psychiatric disorders arises early in life, reflecting in part the 
cumulative effects of thousands of common genetic variants1,2. Data 
from ongoing genome-wide association studies (GWASs) provide 
updated templates to calculate individual risk for psychiatric disor-
ders such as schizophrenia (SCZ), bipolar disorder (BIP) and autism 
spectrum disorder (ASD) through PGSs3–5. Along with gene expression 

data, PGS data have also provided new insights into the biological ori-
gins of psychiatric illness, supporting an essential role for synaptic 
organization6,7. Studies of PGS may ultimately lead to the development 
of clinically useful biomarkers that predict the occurrence of psychi-
atric illness, including in children who have yet to develop full-fledged 
illness and who may benefit from early intervention8,9.
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clinical follow-up data from year 2 (ages 11–12; N = 8,076; 47.7% female; 
21.5% self-reported nonwhite) that were available in June 2022 (ABCD 
Data Release 4.0). The Generation R Study is a European prospective 
birth cohort study which follows the offspring of 9,778 mothers from 
fetal life to adulthood; we used all data from children at ages 9 (N = 1,850; 
50.4% female) and 13 (N = 1,791; 50.3% female) that were available in 
June 2022.

Dimensional psychopathology and PGSs
Dimensions of psychopathology in ABCD were measured using the 
Child Behavior Checklist (CBCL) and Prodromal Questionnaire–Brief 
Child Version (PQ-BC). CBCL items are organized into eight individual 
syndrome scales (anxious/depressed, withdrawn/depressed, somatic 
complaints, social problems, thought problems, attention problems, 
rule-breaking behavior and aggressive behavior) as well as three broader 
scales (Internalizing, Externalizing and Total symptoms). Consistent 
with earlier reports16, dimensions of psychopathology across the indi-
vidual syndrome and broader scales demonstrated moderate-to-strong 
bivariate correlations both at baseline (N = 11,852; Pearson r values, 
0.29–0.85; P values < 9.62 × 10−227) and at year 2 (N = 8,076; Pearson r 
values, 0.30–0.84; P values < 5.63 × 10−167; Fig. 1). Measurements within 
individuals tended to be stable over time (CBCL Total symptoms, 
r = 0.71; other CBCL scales, r values 0.53–0.69). In contrast, prodro-
mal psychosis symptoms correlated comparatively weakly with CBCL 
domains at baseline (Pearson r values, 0.07–0.14; P values < 5.26 × 10−14) 
and year 2 (Pearson r values, 0.11–0.19; P values < 1.29 × 10−22), and were 
less consistent over time (r = 0.33). To replicate our findings, we lever-
aged data from the Generation R Study, a prospective birth cohort 
study which follows the offspring of 9,778 mothers from fetal life to 
adulthood. In this sample, the structure of psychopathology at age 9 
(N = 1,850) and age 13 (N = 1,791) was comparable to that of the ABCD 
sample. Correlations among CBCL syndrome and broader scales were 
moderate to strong, underscoring the lack of differentiation of child 
psychopathology into discrete subtypes (age 9: Pearson r values, 
0.25–0.98; P values < 1.32 × 10−28; age 13: Pearson r values, 0.26–0.97; 
P values < 4.07 × 10−29; Fig. 1). Although psychosis spectrum symptoms 
were measured using a different scale in Generation R (ref. 23) than in 
ABCD, they similarly showed a relatively weak correlation with CBCL 
scores (age 9: Pearson r values, 0.11–0.19; P values < 1.02 × 10−06; age 
13: Pearson r values, 0.11–0.24; P values < 9.64 × 10−06).

Genotype data from 4,462 unrelated ABCD youths of European 
ancestry were used to generate individual participants’ PGSs for eight 
psychiatric illnesses (anorexia nervosa (AN), obsessive-compulsive 
disorder (OCD), Tourette syndrome (TS), ADHD, ASD, major depressive 
disorder (MDD), BIP, SCZ), plus a broad index of cross-disorder risk 
(CROSS) across the aforementioned eight disorders, using summary 
statistics from the PGC2–4,11,21,24–27. The symptom correlation matrix of 
genotyped participants closely resembled that of the entire sample 
(Extended Data Fig. 1). Consistent with previous reports using ABCD 
baseline data28 and other PGS studies of psychopathology within com-
parable age groups28–30, among all disorder-specific PGSs, ADHD and 
MDD most strongly predicted dimensional psychopathology scores at 
ages 9–10. Additionally, CROSS significantly predicted a broad range 
of symptom categories, including psychotic spectrum symptoms  
(Fig. 2a). This overall pattern was largely unchanged at the year 2 
follow-up (ages 11–12; Fig. 2b).

Next, we used a recently reported method31 to detect latent  
clustering of cross-disorder genomic data through genomic structural 
equation modeling (gSEM). As per Lee et al.21, gSEM of the aforemen-
tioned eight-psychiatric-disorder GWAS identified three factors: NDV, 
which reflected loading of ADHD, ASD, MDD and Tourette syndrome 
PGSs; Compulsive (COMP), which reflected loading of anorexia ner-
vosa, OCD and Tourette syndrome PGSs; and Mood-Psychotic (MP), 
which reflected loading of BIP, MDD and SCZ PGSs (Supplementary 
Table 1). Of these three gSEM-derived scores, NDV scores predicted 

Despite great promise, several factors currently limit the potential 
clinical application of PGSs in children. First, the studies used to derive 
PGSs, such as those conducted by the Psychiatric Genomics Consor-
tium (PGC) and other large-scale efforts, have largely—and in many 
cases exclusively—enrolled adult participants10, even when disorders 
usually diagnosed in childhood, including ASD4 and attention deficit 
hyperactivity disorder (ADHD)11,12, are examined. However, the clini-
cal relevance of genetic loading in children for disorders that usually 
present in adulthood remains uncertain. Moreover, even for disorders 
usually first diagnosed in children, these diagnoses may not persist or 
may change in adulthood13, potentially complicating the application 
of PGSs across development.

Second, even more so than in adults14, psychiatric symptoms in 
children tend to be poorly differentiated and often do not conform with 
discrete diagnostic categories15,16. Because established disease-specific 
PGSs were derived from case–control studies, it remains largely unclear 
whether these PGSs capture more subtle psychopathology in children. 
In research studies, such psychopathology is often assessed using 
dimensional measures that are continuous across healthy and disease 
populations, and are not bound by conventional, threshold-based diag-
nostic categories. This approach enables the identification of clinical 
features that may associate with genetic loading differently in children 
than in adults. For example, an emerging pattern for ADHD PGS sug-
gests that increased PGS values in children are linked to a range of 
externalizing symptoms beyond inattention and hyperactivity, includ-
ing aggression17. In contrast, studies relating SCZ PGS to psychotic 
symptoms in children have been inconsistent18,19, perhaps reflecting 
important differences in how psychosis is measured or experienced 
in children versus adults.

Third, given such clinical heterogeneity, the substantial overlap in 
PGSs across different psychiatric conditions20–22 further complicates 
the search for parsimonious relationships between polygenic risk indi-
ces and clinical syndromes in children. Cross-disorder PGSs account 
for genomic risk that overlaps across psychiatric conditions20,22, but 
again may not capture fluid relationships between clusters of genetic 
risk and emerging psychopathology in children. Further, uncertainty 
persists about when during neurodevelopment, and where within 
the brain, polygenic loading lays the foundation for psychiatric risk.

We leveraged genomic data and measures of psychopathol-
ogy from the population-based Adolescent Brain Cognitive Devel-
opment (ABCD) Study, and also from the Generation R Study as a 
replication cohort, to evaluate the relationships of disease-specific 
and cross-disorder PGSs to dimensional psychopathology in 
mid-childhood. In each cohort, we found that a latent neurodevel-
opmental factor (termed NDV) PGS, identified from the latest PGC 
cross-disorders study21, captured variance in dimensional psychopa-
thology across numerous domains with greater sensitivity than any 
disease-specific or other cross-disorder PGS. Among eight neuropsy-
chiatric disorders examined in the PGC cross-disorder study, the NDV 
factor represented genetic risk primarily shared among early NDV 
disorders, such as ASD, ADHD and Tourette syndrome, along with major 
depression21. Using data from postmortem gene expression atlases, 
we also found that NDV effects converged on synaptic organization 
within the fetal cerebellum, a pattern echoed by an association between 
cerebellar volumes derived from magnetic resonance imaging (MRI) 
and psychopathology within the ABCD sample.

Results
Participants
Data from two developmental cohort studies, ABCD and Generation R, 
were included in the clinical and genomic analyses; in addition, struc-
tural MRI data were analyzed from ABCD. The ABCD Study enrolled 
11,875 children, aged 9–10, across 22 US sites. For the current analy-
sis, we used complete data from baseline assessments (ages 9–10; 
N = 11,852; 47.8% female; 24.6% self-reported nonwhite) as well as all 
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the widest range of psychopathology (Fig. 2a,b and Supplementary 
Tables 2 and 3). COMP and MP PGSs contributed minimally to vari-
ance in CBCL Total at ages 9–10, and even less so at ages 11–12. Further, 
direct comparison of NDV versus all other individual PGSs, includ-
ing disease-specific indices, indicated that NDV PGS accounted for 
significantly more variance in CBCL broader scales and psychosis 
spectrum symptoms at both timepoints, with the exception of MDD as 
a predictor of internalizing symptoms (Fig. 2c,d, Supplementary Fig. 
1 and Supplementary Table 4). In a sensitivity analysis, we repeated 
baseline analyses using a different method for calculating PGS, PRS-CS, 
a Bayesian approach to PGS generation32, and found similar results  
(Supplementary Table 5).

Independent analyses with both disorder-specific and 
gSEM-derived factors of CBCL Total symptoms in Generation R showed 
similar results. At both timepoints (ages 9 and 13), NDV PGS was asso-
ciated with the widest spectrum of psychopathology, although dif-
ferences between NDV and ADHD narrowed at age 13 (Extended Data  
Fig. 2a,b and Supplementary Tables 6 and 7). NDV PGS again had greater 

predictive power than all other PGSs for CBCL Total and Externalizing 
symptoms at age 9, although no PGSs predicted Internalizing or Psy-
chosis Spectrum symptoms within the smaller Generation R cohort at 
that age. At age 13, NDV PGS outperformed all PGSs except for ADHD 
in predicting CBCL Total, Externalizing, Internalizing and Psychosis 
Spectrum symptoms (Extended Data Fig. 2c,d, Supplementary Fig. 2 
and Supplementary Table 8).

The substantial overlap in scores among CBCL syndrome-specific 
scales reflects in part a shared general factor of psychopathology (‘p’), 
which has been parsed from residual (orthogonal) variance in more 
specific measures using bifactor models of baseline ABCD CBCL data33. 
Applying PGSs, we determined the extent to which genetic mapping 
onto multiple specific symptoms reflected associations of PGSs with 
‘p’ in ABCD. Among PGSs, only NDV, ADHD and MDD genetic loading 
associated significantly with ‘p’, although NDV effects were signifi-
cantly stronger than the others (P values ≤ 0.012). However, none of the 
‘p’-residualized factors derived from either three-factor (‘p’, internal-
izing, externalizing) or nine-factor (‘p’ and the eight syndrome-specific 
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Fig. 1 | Pearson correlations among dimensional psychopathology measures 
in ABCD and Generation R cohorts (11 CBCL scales, and PQ-BC distress 
scores), stratified by sex. a,b, Correlation matrix of psychopathology in ABCD 
at ages 9–10 (n = 11,852) (a) and 11–12 (n = 8,076) (b). c,d, Correlation matrix of 
psychopathology in Generation R at ages 9 (n = 1,850) (c) and 13 (n = 1,791) (d). 

Males are represented in the top right of the matrices, and females in the bottom 
left. Colors represent strength of correlation coefficients (Pearson r) between 
respective variables (see legend). All correlations are statistically significant after 
correction for multiple comparisons using the FDR (Q < 0.05). Anx/dep, anxious/
depressed; With/dep, withdrawn/depressed.
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factors) models significantly associated with NDV or any other PGS 
(Supplementary Table 9).

Further, given the associations of NDV PGS with continuous meas-
ures of psychopathology, we also tested the relative strength of NDV 
PGS in predicting psychopathology that is strong enough to fall within 
the clinical range in the ABCD cohort. Of all disorder-specific and 
cross-disorder PGSs, when comparing the top with bottom quintiles, 
NDV PGS was the only measure of genetic risk that was consistently 
associated with higher odds of endorsing both psychopathology 
within the clinical range (CBCL Total score ≥ 64 (ref. 34)) at baseline 
(odds ratio (OR) = 1.88; 95% confidence interval (95% CI), 1.26–2.80; 
P = 0.002) and newly emergent clinical-range psychopathology at 
age 11–12 (OR = 2.30; 95% CI, 1.11–4.77; P = 0.02), although the age 
11–12 result would not survive false discovery rate (FDR) correction 
(Extended Data Fig. 3).

NDV gene ontology and spatiotemporal expression in brain 
tissue
We next leveraged gene ontology (GO) and postmortem gene expres-
sion databases to explore biological pathways through which NDV 
genes could impart risk for childhood psychopathology. After anno-
tation35 of NDV single nucleotide polymorphisms (SNPs) to nearby 
genes, of 19,052 genes tested, 68 genes were significantly enriched 
for NDV SNPs after FDR correction (Q < 0.05; Supplementary Table 
10). Although GO analyses of these 68 significant genes yielded no 
FDR-significant GO terms, GO cellular component analysis of the top 5% 
most significant genes (P < 0.014, Q < 0.291, N = 952) indicated enrich-
ment for synaptic processes, mostly localized in dendritic and neuron 
spines (Supplementary Table 11). Similar results were seen in sensitivity 
analyses that included the top 2% and top 10% most significant genes 
(Supplementary Table 12). Follow-up GO analyses focusing specifically 
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Fig. 2 | Prediction of dimensional psychopathology in unrelated young 
adolescents of European ancestry by disorder-specific and gSEM-derived 
PGSs. a, Prediction of dimensional psychopathology by PGSs of eight syndrome-
specific and three broadband CBCL scores, and PQ-BC scores at age 9–10 
(n = 4,459), with warm (red/yellow) colors indicating positive relationships 
and cool (blue) colors indicating negative relationships with PGS. White boxes 
indicate nonsignificant relationships (P > 0.05). Statistical significance and 
effect (coefficient) estimates are derived from linear mixed models regressing 
psychopathology on PGS covarying for age, sex and the top five genetic ancestry 
principal components as fixed effects and study site as a random effect. P values 
shown are uncorrected. Stars indicate tests that were significant after correcting 

for multiple comparisons using the FDR, Q < 0.05. b, Repeated analyses in 
the same participants at 11–12 (n = 3,360). c, Variance in total dimensional 
psychopathology (CBCL Total) explained by disorder-specific, cross-disorder 
and gSEM-derived PGSs in the ABCD sample at ages 9–10 (n = 4,459), with color 
shades reflecting SNP inclusion thresholds (Pt). Uncorrected P values (shown 
within the figure in black text near the y-max) represent the significance of the R2 
change after adding NDV PGSs to base models that included each other PGS and 
nuisance covariates (see above), at the broadest SNP inclusion threshold (Pt = 1). 
d, Repeated analyses in the same participants at ages 11–12 (n = 3,360). All P 
values were two-sided. AN, anorexia nervosa; TS, Tourette syndrome.
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on synaptic processes (SynGO)36 most strongly implicated presynaptic 
terms (Fig. 3a). In contrast, among 2,571 genes that were significantly 
(Q < 0.05) enriched for MP SNPs, SynGO revealed a preponderance of 
postsynaptic terms (Supplementary Fig. 3a). Only eight genes mapped 
onto COMP-associated SNPs (Q < 0.05), likely reflecting smaller sample 
sizes in PGC GWASs that load onto this factor. As such, subsequent 
analyses focused on NDV and MP genes.

We next used FUMA (Functional Mapping and Annotation of 
GWAS)37 in conjunction with Genotype-Tissue Expression (GTEx) v8 
(ref. 38) gene expression data to compare tissue-specific expression 
of NDV and MP genes. Genes harboring NDV SNPs were most strongly 
expressed in the cerebellum (P = 2.14 × 10−7), followed by cerebral corti-
cal and subcortical regions (Fig. 3b). In contrast, genes harboring MP 
SNPs were most strongly expressed in the cerebral cortex, followed by 
cerebellar and subcortical regions (Supplementary Fig. 3b).

To assess temporal patterns of NDV and MP gene expression 
within the cerebellum, and to conduct exploratory analyses in other 
brain regions, we used BrainSpan39 data, contrasting tissue obtained 
postmortem from fetal brain versus postnatal brain tissue in six brain 
regions. Within the cerebellum, FDR-significant NDV genes (N = 68) 
were expressed significantly more strongly before birth than after birth 
(P = 8.68 × 10−08; Fig. 3c,e). Across five other cortical and subcortical 
regions, expression levels of NDV genes also differed between pre- and 
postnatal timepoints in the mediodorsal nucleus of the thalamus and 
the striatum (Supplementary Table 13). Conversely, MP genes were more 
highly expressed before birth than after birth in all regions assessed 
(for example, neocortex; Fig. 3d) except for the cerebellum (Fig. 3c) 
after correcting for multiple comparisons (uncorrected P values  
< 0.001; Pcerebellum = 0.56) (Supplementary Table 13). Additionally, we 
inspected regional expression patterns of individual genes across the 
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Fig. 3 | Spatial and temporal NDV gene expression. a, SynGO expression profile 
of NDV genes indicating enrichment for synaptic (and primarily presynaptic) 
neuronal processes. b, Plot of results from MAGMA gene property regression 
(one-sided) analysis showing significance levels (uncorrected, log-transformed, 
y axis) of each region tested (x axis; n = 17,265 genes across 53 tissue types). 
Horizontal dashed line indicates Bonferroni-corrected significance threshold 
(0.05/53). c,d, Boxplots comparing prenatal with postnatal expression of FDR-
significant (Q < 0.05) MP (left; n = 2,751 genes) and NDV (right; n = 68 genes) genes 

in the cerebellum (c) and neocortex (d). Boxes represent the interquartile range 
(IQR), lines within the boxes the median, whiskers the IQR × 1.5 and points the 
outliers. e, Spline graphs comparing NDV (blue) and MP (red) gene expression 
across the lifespan in the cerebellum. Shaded regions represent standard error. 
DCV, neuronal dense core vesicle; ECM, extracellular matrix of the synpatic cleft; 
ER, presynaptic endoplasmic reticulum; RPKM, reads per kilobase million; SV, 
synaptic vesicle.
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lifespan for top NDV genes (Extended Data Fig. 4). Two genes, SEMA6D 
and FOXP2, which have been implicated in the etiologies of neuropsy-
chiatric disorders11,40, show marked differences in pre- and postnatal 
expression in the cerebellum (Extended Data Fig. 4).

Associations of gene expression patterns with symptoms
We next determined whether relationships between variation in NDV 
genes and dimensional symptoms were conditional on the developmen-
tal timing of cerebellar gene expression. First, we parsed all genes with 
available expression data into three groups based on expression levels 
in the cerebellum: those that show FDR-significant peaks in expres-
sion (1) before birth (N = 3,506 genes) and (2) after birth (N = 4,025 
genes), and (3) those that do not significantly differ in expression 
between pre- and postnatal timepoints (N = 10,073 genes). Then, we 
generated partitioned NDV PGSs (pPGSs) from each of these sets of 
genes and tested their association with psychopathology. Genes that 
were primarily expressed before birth in the cerebellum associated 
significantly with various CBCL scores (Q values 2.55 × 10−05 to 0.019); 
genes that showed comparable pre- and postnatal expression levels 
exhibited similar associations with CBCL as well as PQ-BC (Q values 
2.75 × 10−06 to 0.030; Fig. 4a and Supplementary Table 14). Conversely, 
PGSs calculated with genes expressed after birth in the cerebellum did 
not significantly predict CBCL scores (Q values > 0.05). In contrast, 
cumulative effects of postnatal NDV genes on CBCL were comparable 
to those of prenatal NDV genes within other subcortical structures and 
the neocortex (Fig. 4b–f).

Relationship of CBCL scores to cerebellar volumes
Baseline T1 MRI scans from all ABCD participants underwent rigorous 
visual quality control, resulting in retention of 3,878 scans from the 
unrelated European ancestry group, and 10,076 scans overall. Total 
cerebellar and cerebellar subregion volumes were determined after seg-
mentation using Automatic Cerebellum Anatomical Parcellation Using 
U-Net with Locally Constrained Optimization (ACAPULCO) software, 
which has been validated in previous pediatric cohorts41. We then exam-
ined relationships among NDV PGSs, cerebellar volumes, and broader 
CBCL scores and PQ-BC. In the European ancestry group, neither NDV 
PGS nor NDV pPGS associated significantly with global brain volume 
measures (total brain, cortical, subcortical and cerebellar gray matter 
volumes; Supplementary Table 15). However, in the larger group (that is, 
not restricted to participants of European ancestry), total cerebellar gray 
matter volume was negatively associated with CBCL Total (P = 0.012) 
and Externalizing (P = 1.23 × 10−4) scores (Supplementary Table 16). 
Among specific cerebellar lobule volumes, right lobules VIIt–VIIB had 
the strongest inverse association with CBCL Total scores, although 
this relationship did not survive multiple testing correction (ß (beta 
coefficient estimate) = −0.035, P = 0.006, Q > 0.05). Volumes of the 
left lobules I–V (ß = −0.43, P = 6.25 × 10−4, Q < 0.05) and VIII (ß = −0.46, 
P = 1.88 × 10−04, Q < 0.05) and Vermis I–V (ß = −0.38, P = 0.002, Q < 0.05), 
which are anterior regions that show functional coupling to somatomo-
tor and association cortex42, exhibited the strongest inverse associations 
with CBCL Externalizing score (Fig. 5, Supplementary Fig. 4 and Supple-
mentary Table 17). Exploratory analyses testing for associations between 
dimensional psychopathology and cortical and subcortical volumes 
outside of the cerebellum revealed significant inverse correlations in 
a number of cortical regions, including somatomotor and association 
cortex, and subcortical regions, including brain stem, thalamus and 
hippocampus (Extended Data Fig. 5 and Supplementary Tables 18 and 
19). Results from sensitivity analyses including subjects with the highest 
quality scans (that is, those rated as ‘1’ or ‘2’ per MRI data quality control 
in the Methods, N = 8,658) are reported in Supplementary Table 20.

Discussion
In this study we found that dimensional psychopathology in children is 
most strongly related to an NDV PGS comprising overlapping genetic 

variants across ADHD, ASD, MDD and Tourette syndrome. NDV scores 
explained more variance across the spectrum of psychopathology 
than any other disorder-specific or cross-disorder measure of genetic 
risk. Longitudinal data demonstrate stable and replicable effects of 
NDV PGS on psychopathology in early adolescence. Further, conver-
gent data from complementary GO, gene expression and MRI datasets 
link presynaptic effects of NDV genes in the fetal cerebellum to down-
stream clinical effects. Collectively, these findings suggest a mechanism 
through which altered fetal cerebellar development instantiates risk 
for a wide range of childhood psychopathology.

These findings are consistent with growing evidence for the 
dimensional underpinnings of psychopathology and of the heritable, 
developmental origins of neuropsychiatric illness. Research studies of 
child psychopathology increasingly rely on dimensional scales reflect-
ing deviation from age-related norms. As such, PGSs representing 
shared risk among psychiatric disorders may be well-suited to track 
with risk for emergent psychiatric illness. Previous studies, including an 
analysis of age 9–10 ABCD data, have reported significant, but weaker, 
effects of disorder-specific PGSs on dimensional psychopathology 
in mid-childhood17,18,28,43. The present results indicate that polygenic 
risk models accounting for overlapping risk among NDV disorders are 
better suited to capturing psychopathology that occurs in childhood. 
For example, while psychosis spectrum symptoms were unrelated 
to SCZ PGS in both the ABCD and Generation R cohorts (consistent 
with some previous studies of children and adolescents18,44), they 
were significantly predicted by NDV PGS (at both ages in ABCD, and 
at age 13 in Generation R). This pattern contrasts with that seen in 
adults, where disorder-specific PGSs most strongly predict risk for their 
respective clinical syndromes despite extensive pleiotropy observed 
across major psychiatric disorders45. As participants in the ABCD 
Study approach adulthood, and psychopathology becomes further 
differentiated, it will be of interest to follow whether disease-specific 
polygenic models account for more variance in symptoms than they 
do at the outset of adolescence. Prospectively observing when, and in 
whom, clinical sequelae of generalized (NDV) loading are supplanted 
by disorder-specific PGSs may ultimately lead to refined predictive 
algorithms for youth who show nonspecific early symptoms.

NDV PGSs were derived empirically from pooled GWAS data that 
cover eight psychiatric disorders, and represent overlapping genetic 
risk among ADHD, ASD, Tourette syndrome and MDD. While the first 
three of these disorders are typically diagnosed in childhood, MDD 
also presents frequently in children, with approximately one-fifth of 
children aged 12–17 reporting a major depressive episode46. Compared 
with later in adolescence, early childhood depression reflects stronger 
genetic overlap with ADHD, and more frequently co-occurs with lan-
guage and communication traits seen in autism47. Further, MDD PGSs 
derived from adult-sample GWASs consistently associate not only 
with internalizing symptoms, but also with ADHD, social problems and 
overall psychopathology in other large cohorts of children29. GWASs of 
MDD also implicate NDV processes48. However, in the present results, 
NDV PGS predicted more variance in dimensional depression scores 
than did MDD PGS, and overall predicted more variance in most aspects 
of dimensional psychopathology compared with disorder-specific 
PGSs. Additional analyses suggested that NDV likely contributes to 
this range of symptoms in early adolescence through its effects on ‘p’, 
that is, a general factor of psychopathology, rather than through direct 
effects on differentiated symptoms—and thus suggest the possibility 
that these symptoms reflect common biological substrates that act 
downstream of NDV genes.

While genes annotated to NDV-associated variants are expressed 
throughout the brain, they are most strongly expressed within the fetal 
cerebellum. The role of the cerebellum in the emergence of psychopa-
thology has received increased attention over the past two decades49–53. 
To our knowledge, relationships between cerebellar volumes and 
dimensional psychopathology have not previously been examined in 
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Fig. 4 | Tissue-specific effects of NDV pPGS, based on gene sets with prenatal 
peak, postnatal peak or continuous gene expression, on dimensional 
psychopathology. Linear mixed effects regressions are adjusted for age, sex 
and the top five genetic principal components (PCs) as fixed effects, and site as 
a random effect. P values shown are two-sided and uncorrected. Stars indicate 

P < 0.05 after FDR correction for 36 comparisons (3 pPGSs × 12 measures 
of psychopathology). White boxes represent nonsignificant relationships 
(P > 0.05). Panels represent NDV pPGS partitioned based on expression in the 
cerebellum (a), amygdala (b), hippocampus (c), medial dorsal thalamus (d), 
striatum (e) and neocortex (f).
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the ABCD Study. Of note, the relatively high spatial variability of small 
cerebellar lobules across individuals necessitates the use of special-
ized, probabilistic atlases to resolve lobular volume artifacts54. For 
the present analysis, we used a cerebellar atlas that has been validated 
in children. Also, robust visual quality control of all individual MRI 
scans (Methods) enabled the elimination of scans with substantial 
artifacts that were not detected by standard quality control measures in  
Freesurfer, as well as inclusion of individual scan quality ratings for 
those images that were deemed sufficient for inclusion.

That NDV genes were preferentially expressed in the cerebellum 
echoes previous, smaller studies that found associations between 
cerebellar gray matter morphology and general psychopathology, 
norm-violating behaviors and psychosis through late adolescence51. 
In the present analysis, NDV scores predicted the same three measures 
of psychopathology above all other measures of genetic risk, and in 
the larger ABCD sample, more strongly predicted externalizing psy-
chopathology and psychosis than internalizing psychopathology at 
both timepoints. Further, while cerebellar morphometry negatively 
predicted total psychopathology, replicating findings of several stud-
ies51,52, the present analyses also demonstrate that volumes within 
specific cerebellar subregions more strongly predicted externalizing 
and psychotic symptoms compared with total symptoms.

Altered cerebellar development has been linked to numerous neu-
ropsychiatric syndromes in children55, but as in other previous work56, 
in the present study structural variation in extracerebellar cortical and 
subcortical regions also associated with psychopathology scores, as 
did variation in NDV genes expressed in these regions. Effects of fetally 
expressed NDV genes within the cerebellum may propagate over space 
and time, including via extracerebellar regions that contribute to 
psychopathology risk. The cerebellum is synaptically and functionally 
coupled to all major brain networks via cerebellum–thalamic–cortical 
loops42 and modulates gain for motor, cognitive and emotional func-
tion57. Disruption in cerebellar connectivity to cortical regions has 
been implicated in SCZ and autism58,59. It has been proposed that fetal 
cerebellar development influences postnatal maturation of multiple 

cortical regions60. As such, disrupted fetal cerebellar development 
may exert downstream effects on cortical maturation that are rel-
evant to psychiatric symptoms60,61. In support of this idea, we found 
that reduced volumes in somatomotor regions of the cerebellum (for 
example, lobules I–V, VIII), as well as in networked regions within the 
sensorimotor cortex, associated with increased externalizing symp-
toms, a pattern consistent with previous findings62. The present results 
implicate NDV genes in this process, in particular to the extent that 
their expression in fetal cerebellum influences externalizing symptoms 
through downstream effects on cortical development. Longitudinal 
follow-up of ABCD participants may identify structural and functional 
variations in cerebellar and networked regions that associate with, and 
potentially precede, changes in symptoms over time.

The present analyses did not identify relationships between 
NDV scores and gray matter volumes, despite the statistically robust 
relationships between NDV PGSs and dimensional psychopathology 
measures. Recent large-scale MRI studies have highlighted the need 
for very large sample sizes to avoid type I and type II error in relating 
psychopathology to anatomical and functional brain variation63,64. Like-
wise, very large samples—possibly larger than ABCD—may be needed 
to link MRI indices and psychopathology with underlying genomic 
risk. Alternatively, as NDV genes tend to show peak cerebellar expres-
sion during fetal life, PGSs arising from these genes may track more 
closely with cerebellar volumes during fetal development than in 
childhood. However, the finding that cerebellar gray matter volumes 
cross-sectionally predicted psychopathology scores in early adoles-
cence suggests the possibility that NDV gene expression during fetal 
life exerts developmentally downstream effects on cerebellar structure 
that become relevant to emerging psychopathology after birth. Future 
studies that provide detailed spatiotemporal gene expression data 
from human cerebellum, drawing from recent studies in mice65, may 
enable closer triangulation among intracerebellar NDV expression, 
cerebellar lobule volumes and emergent pediatric psychopathology.

Several limitations of the current study may be addressed in 
future analyses. First, the largest gene expression dataset used in 
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Fig. 5 | Association between cerebellar volumes and dimensional 
psychopathology. a, Cerebellar lobule map with legend for reference. Each 
lobule is represented by a different color (see key below). b, Effects of cerebellar 
volume on dimensional psychopathology: from left to right, CBCL Total, 
Internalizing, Externalizing and PQ-BC. Brighter reds indicate more significant 

associations with stars indicating regions that showed statistical significance 
after correction for multiple comparisons (FDR). Linear mixed effects models 
were adjusted for age, sex, intracranial volume and Euler number as fixed effects, 
and site, scanner and family ID as random effects. R/L, right/left; Ver, vermis.
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our analysis (GTEx v8), which we used to identify the cerebellum as a 
region-of-interest, is derived largely from adults38. Therefore, although 
NDV genes are likely relevant for cerebellar function, we are unable to 
determine with the same confidence their importance to cerebellar 
development. However, as described above, top (FDR-significant) NDV 
genes are expressed significantly more during the prenatal period than 
after birth, suggesting that they have some relevance to early cerebellar 
development. Related to this issue, with the two available gene expres-
sion datasets (GTEx v8 and BrainSpan), we are limited in the number 
of brain regions in which we can investigate the expression patterns 
of genes. Thus, we are unable to systematically assess the relative 
importance of NDV gene expression in the cerebellum compared with 
other regions of the brain. Although the ABCD Study itself is designed 
to reproduce the diversity of the US population, our current genomic 
analyses were restricted to non-Hispanic participants of European 
descent. This approach was necessitated by the risk of population 
stratification artifacts when pooling data from participants of mixed 
ancestry. The field of psychiatric genomics is making strides towards 
greater diversity66, but sample sizes of both non-European discovery 
GWAS datasets and related analyses in ABCD are likely underpowered 
at present. As such, the generalizability of the present genomic findings 
to non-European ancestry individuals remains limited. Finally, the data 
reported here are limited to early adolescence, rely to some extent on 
parent-reported data and exclude children with serious mental illness 
(for example, SCZ, severe autism). Our analysis of 2-yr follow-up data 
(ages 11–12) showed similar patterns of association with PGSs to those 
seen in ages 9–10. Nevertheless, the next several years of life, charac-
terized by substantial biological and social changes, will likely bring 
about further phenotypic differentiation. Continued observation of 
the ABCD participants will enable a fuller view of the dynamics of psy-
chopathology over adolescence, and a more complete understanding 
of how emergent psychopathology tracks with genetic variation and 
neuroanatomical development.
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Methods
ABCD Study
The ABCD Study includes data from 11,875 children aged 9–10 at base-
line with the intention of following them through adolescence. All data 
were obtained from the National Institute of Mental Health (NIMH) Data 
Archive (NDA), Curated Annual Release 4.0 using the NDA Download 
Manager Beta (v.1.39.0). General inclusion and exclusion criteria for the 
ABCD Study are described elsewhere67,68. In brief, 9–10-yr-old children 
were recruited from the community, had no contraindications to MRI 
scanning and were excluded if they: were not fluent in English; had a his-
tory of major neurological disorders, traumatic brain injury or extreme 
prematurity; or carried a diagnosis of SCZ, moderate-to-severe ASD, 
intellectual disability or substance use disorder. Institutional Review 
Board (IRB) approval for the ABCD Study is described by Auchter et al.69. 
Most ABCD research sites cede approval to a central IRB at the Uni-
versity of California, San Diego, with the remainder obtaining local 
IRB approval. All parents provided written, informed consent and all 
youth provided assent. Unless explicitly noted, all of the below meth-
ods describe analyses performed with ABCD data. For instructions on 
gaining access to ABCD data, refer to this page: https://nda.nih.gov/
nda/access-data-info.html. To request access to Generation R data, 
researchers can email: datamanagementgenr@erasmusmc.nl.

Measures of psychopathology
Data from the CBCL and distress scores from the PQ-BC were analyzed 
to assess psychopathology at baseline (ages 9–10) and year 2 follow-up 
(ages 11–12). The CBCL is reported by parents and consists of 11 scales, 
three of which capture broader psychopathology—Total, Internalizing 
and Externalizing—and eight of which capture more specific syndromes 
of psychopathology—anxious/depressed, withdrawn/depressed, 
somatic complaints, social problems, thought problems, attention 
problems, rule-breaking behavior and aggressive behavior. The PQ-BC 
is a modified version of the Prodromal Questionnaire Brief and estab-
lishes the presence or absence of symptoms of prodromal psychosis as 
reported by the child. A rating of distress for each endorsed item is also 
recorded on a scale of 1–5. For the present analysis, total distress scores 
were calculated by summing the distress and endorsement scores for all 
21 questions for each individual. In Generation R, comparable measures 
of psychopathology were used including the same eight syndrome and 
three broadband CBCL scales. Because the PQ-BC was not collected in 
Generation R, consistent with a previous study23, psychotic experiences 
were evaluated using two items on auditory and visual hallucinations 
from the Youth Self-Report34: (1) ‘I hear sounds or voices that are not 
there according to other people’ and (2) ‘I see things that other people 
think are not there’. Children responded on a three-point scale: not at 
all (0), a bit (1) or clearly (2). The sum score of the two hallucination 
items was calculated, and children were grouped into three different 
categories: no symptoms (0 points), mild symptoms (score of 1 point 
on at least one of the items) and moderate-to-severe symptoms (score 
of 2 points on at least one of the items).

Bifactor analyses of CBCL
Bifactor analyses followed from Clark and colleagues33, who analyzed 
baseline CBCL data from the ABCD Study. Factor loadings from two 
models, GFP-2 and GFP-3, were used to provide scores for nine-factor 
(‘p’ as well as residualized eight CBCL syndrome-specific scales) and 
three-factor (‘p’ as well as residualized CBCL Internalizing and External-
izing scales) models, respectively, for each ABCD participant based on 
their age 9–10 individual item data.

Quality control and imputation of genetic data
Genotype data from nontwin individuals of self-reported European 
ancestry were retained for analysis. To minimize family-level con-
founders, one child was randomly selected for analysis from every 
sibling pair. All subsequent pre- and postimputation quality control 

analyses were conducted using PLINK v.1.9. SNPs with a minor allele 
frequency (MAF) of less than 1%, with missingness greater than 5% 
and with Hardy–Weinberg equilibrium less than 1 × 10−5, were filtered. 
Variants in linkage disequilibrium were pruned using a window size 
of 50 kilobases (kb), a step size of 5 kb and an R2 threshold of 0.5. A 
principal components analysis was then run to calculate the first four 
principal components and to filter individuals who fell outside 4 s.d. 
from the mean of each of the four principal components, calculated 
in a European reference population via the 1000 Genomes Project70. 
Individuals were removed who had an identity-by-descent value greater 
than 0.125, a sex mismatch or who were missing more than 5% of their 
data. Shapeit v.2 was used for prephasing, with genotyping data from 
the 1000 Genomes project used as a reference panel. IMPUTE v.2 was 
used for imputation.

Polygenic scoring analysis using ABCD data
After imputation, variants were filtered for an INFO score of less than 
0.9, a MAF < 0.01 and missingness > 0.05. PGSs were calculated by sum-
ming the loci associated with risk of a particular trait weighted by their 
effect size on that trait. Using PRSice-2 (ref. 71) and an R2 threshold of 
0.1 to clump SNPs in linkage disequilibrium, PGSs were calculated for 
eight specific psychiatric disorders—ADHD, ASD, anorexia nervosa, 
BIP, MDD, OCD, SCZ and Tourette syndrome—the summary statistics of 
which were obtained from the PGC and can be found here: https://www.
med.unc.edu/pgc/download-results/. These disorders were selected 
in line with the recent PGC Cross-Disorder Group (CDG) paper, which 
identified cross-trait risk loci across these eight disorders21. Following 
up on further analyses from the CDG, PGSs were also derived from three 
latent factors that together accounted for 59% of the genetic variation 
among the eight neuropsychiatric disorders. A liberal P value inclusion 
threshold of 1.0 was selected for subsequent PGS analyses to include 
all SNP effects and to be consistent across the dimensions of psychopa-
thology tested; however, predictive power (represented as R2 change) 
at each inclusion threshold can be seen in Fig. 2, Supplementary Figs. 1 
and 2 and Extended Data Fig. 2c,d. To determine whether PGS effects on 
psychopathology were driven by GWAS discovery sample sizes, we plot-
ted each GWAS sample size on the corresponding PGS effect estimate 
from models regressing CBCL Total on PGS (Supplementary Fig. 5).

Sensitivity analysis using PGSs calculated with PRS-CS
As a sensitivity analysis, we regenerated PRSs using a Bayesian approach 
(PRS-CS32). Due to the relatively small sample sizes (<200,000) and high 
polygenicity of the tested psychiatric traits, ϕ, the global shrinkage 
parameter, was set at 0.02 for all traits except CROSS, for which ϕ was 
learned from the data. The remainder of the parameters were kept at 
the default setting. In PLINK, the resultant posterior effect sizes were 
applied to individual-level genotype data to generate PGSs for each sub-
ject. Results from these analyses are reported in Supplementary Table 5.

GenomicSEM analysis to infer latent factors of major 
psychiatric disorders
The GenomicSEM package in R was used for factor analyses and sub-
sequent calculations of summary statistics of each factor. To verify 
the genetic architecture outlined by the CDG, a genetic covariance 
matrix (S) and sampling covariance matrix (V) were calculated for the 
eight neuropsychiatric disorders by the linkage disequilibrium score 
regression (LDSC) method of the GenomicSEM packages. The S matrix 
was then used for an exploratory factor analysis with three factors and 
promax rotation. Excluding factor loadings of less than 0.2, a latent 
structure was identified that accounted for 59% of the genetic varia-
tion and fell into three categories as previously defined by the CDG: an 
NDV factor comprising ADHD, ASD, MDD and Tourette syndrome; an 
obsessive/compulsive factor (COMP) comprising anorexia nervosa, 
OCD and Tourette syndrome; and an MP factor comprising BIP, MDD 
and SCZ. A follow-up confirmatory factor analysis with three correlated 
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factors suggested a good model fit with χ2(15) = 78.88, Akaike infor-
mation criteria (AIC) = 120.88, comparative fit index (CFI) = 0.940, 
standard root mean square residual (SRMR) = 0.077. With three latent 
structures having been identified in three clusters of psychiatric disor-
ders, common factors of each cluster were regressed onto each SNP via 
the commonfactorGWAS function. Thus, a set of summary statistics, 
representing SNP effects on their respective factors, were generated 
for the NDV, COMP and MP factors separately. Before generating factor 
summary statistics, all PGC summary statistics were standardized and 
preprocessed via the sumstats function.

Gene-based association analyses
Gene-based association analyses were performed through MAGMA35 via 
FUMA’s37 pipeline, which is a web-based software. SNPs within a window 
of 35 kb upstream and 10 kb downstream of a gene were annotated to 
their corresponding genes. With the European 1000 Genomes Project 
Phase 3 data as a reference panel and P values from summary statistics 
of each of the three gSEM factors, the effect and statistical significance 
of each gene on its corresponding phenotype were calculated using 
an SNP-wise mean model, which uses the mean χ2 statistic of SNPs in a 
gene to calculate the effect of the gene35. Gene expression data from 
GTEx v.8 were used for tissue specificity analyses.

GO analyses
Using PANTHER72, a web-based software, GO analyses were performed on 
two sets of NDV genes: (1) FDR-significant genes (N = 68) and (2) top 5% 
most significant genes (N = 952, Q < 0.3). Specifically, we used PANTHER’s 
overrepresentation test73 with Fisher’s exact test for P value calcula-
tion to test which GO terms were overrepresented in each set of genes.  
P values were corrected for multiple comparisons with FDR. Three classes 
of GO terms were tested: cellular components, which identifies cellular 
locations in which products of genes of interest are active; molecular 
function, which defines the biochemical activity of gene products; and 
biological process, which refers to the process to which a gene product 
contributes74. The FDR-significant set of genes (N = 68) yielded no sig-
nificant results, and thus we explored a larger set of genes (N = 952) using 
PANTHER. In addition, given the likely role of synaptic processes in the 
etiology of psychopathology6,7,75,76, we investigated the initial set of 68 
FDR-significant genes using SynGO, a web-based GO software with gene 
annotations specifically related to synapse biology36.

Developmental gene expression trajectories of psychiatric 
risk genes
Using data from the BrainSpan Atlas of the Developing Brain, expres-
sion levels were assessed for genes that were identified by the MAGMA 
annotation analyses and that statistically significantly contributed risk 
to the gSEM-derived latent variable (Q < 0.05). For top NDV (N = 68) and 
MP (N = 2,751) genes, mixed models were used to identify structures 
that showed differential gene expression patterns before and after 
birth. Given within-gene dependence of expression, each gene was 
allowed its own intercept; likewise, each donor was allowed to have 
their own intercept to preserve within-donor relationships. The main 
effect of developmental time window (postnatal = 0, prenatal = 1) 
on expression was used to determine pre- and postnatal differential 
expression within each brain structure. See the formula below mod-
eling the effect of developmental time window on gene expression of 
gene i within donor j:

expij = β0ij + β1postnatal + εij

β0ij = γ00 + μ0ij

Given results from MAGMA’s gene property analysis via the FUMA 
pipeline pointing to the importance and relevance of the cerebellum 
to NDV genes, the main structure of interest was the cerebellum (CBC). 

In addition, five other brain structures were tested: amygdala (AMY), 
medial dorsal thalamus (MDTHAL), striatum (STR), hippocampus (HIP) 
and neocortex (NCX), which was an aggregate of regions: primary audi-
tory cortex (A1C), dorsolateral prefrontal cortex (DFC), inferior parietal 
cortex (IPC), inferolateral temporal cortex (ITC), primary motor cortex 
(M1C), rostral medial prefrontal cortex (MFC), orbital frontal cortex 
(OFC), primary somatosensory cortex (S1C), caudal superior temporal 
cortex (STC), primary visual cortex (V1C) and ventrolateral prefrontal 
cortex (VFC), in addition to occipital neocortex (Ocx), parietal neocor-
tex (PCx), temporal neocortex (TCx) and primary motor-sensory cortex 
(M1C-S1C) as defined on the Allen Brain Atlas site (atlas.brain-map.org). 
BrainSpan data can be downloaded here: https://www.brainspan.org/
static/download.html.

pPGSs
All genes (N = 17,604) were partitioned into those with prenatal peak 
expression, postnatal peak expression and continuous expression (show-
ing no expression differences between pre- and postnatal timepoints), 
using independent samples t-tests that contrasted mean pre- versus 
postnatal expression. After correction for multiple comparisons with 
FDR (number of comparisons = 17,604), genes with a significant positive 
estimate were classified as prenatal genes, with a significant negative 
estimate as postnatal genes and with an insignificant positive or nega-
tive estimate as continuous. These tests were performed within each of 
the aforementioned six regions to identify prenatally, postnatally and 
continuously expressed genes within each brain region. Using MAGMA’s 
SNP-to-gene annotation data to convert gene-level data back to SNP-level 
data, SNPs were classified in the same way (prenatal, postnatal and con-
tinuous within six regions). These data were then used to generate sub-
sets of NDV summary statistics and subsequently PGSs which represent 
the additive effects of SNPs that confer risk to the NDV and which are also 
associated with genes that are expressed differentially or nondifferen-
tially between fetal and child/adult timepoints. These analyses resulted in 
18 new PGSs (3 (pre-, post-, continuous) × 6 regions (CBC, AMY, MDTHAL, 
STR, HIP, NCX)). Psychopathology scores were then regressed onto these 
PGSs, allowing for an inspection of the importance of timing of expres-
sion on emergent psychopathology in pre-adolescence.

Polygenic scoring analysis using Generation R data
Using imputed genotype data from previous Generation R studies77 
and summary statistics from the gSEM output generated from the 
present study, PGSs were calculated for each of the three gSEM factors.

MRI data processing—FreeSurfer
In the ABCD Study, structural T1 images were acquired on 3T scanners 
(1 × 1 × 1-mm3 resolution)78. To correct low frequency intensity nonuni-
formity, also known as a bias field, we used the N4 bias field correction 
algorithm79. Whole brain processing and analyses, including generation 
of global and region-of-interest (ROI) volumes, were conducted using 
FreeSurfer v.7 (http://surfer.nmr.mgh.harvard.edu/).

MRI data quality control
Of 11,875 participants, 160 did not have T1-weighted images available 
to download. A total of 11,715 images were downloaded, 451 of which 
were flagged to receive clinical consultation and thus were excluded 
from visual quality control, and one of which failed FreeSurfer preproc-
essing. The remaining 11,263 images (4,242 from unrelated European 
participants (‘uEur’)) were individually assessed and given a rating 
from a scale of 1–5. The rating criterion was created based on degree 
of manual edits needed. A rating of 1 was given to scans that required 
only minor manual edits that could be completed within approximately 
0.5 hours (n = 4,630 total, 1,610 uEur). A rating of 2 was given to scans 
that required several manual edits but could still be completed within 
approximately 1–2 h (n = 4,063 total, 1,636 uEur). A rating of 3 was given 
to scans with a larger number of manual edits needed that would take 
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more than 3–4 h (n = 1,383 total, 632 uEur). A rating of 4 was given to 
scans with severe motion and other types of artifacts that might not 
be possible to fix with manual edits (n = 219, 48 uEur). The remainder 
of the scans were unusable, had gross anatomical abnormalities or 
had cysts > 1 cm3 (n = 968 total, 87 uEur). Only images that were rated 
as 1, 2 or 3 (n = 10,076 total, n = 3,878 uEur) were used in subsequent 
analyses. For cerebellar subregion analyses, subjects who fell outside 
of 4 s.d. of the mean total cerebellum volume (n = 19) were excluded 
from analyses. Furthermore, to apply as stringent quality control as 
possible, we included a Freesurfer-generated measure of scan quality 
in all neuroimaging models: Euler number80, which indexes the number 
of topological defects, or surface holes, in Freesurfer’s reconstruction 
of the cortical surface and which has been shown previously to act as 
a metric of scan quality81. The number of surface holes was used as a 
fixed effect in all imaging analyses.

Cerebellum segmentation with ACAPULCO
We used ACAPULCO for cerebellum subregion analysis41. ACAPULCO 
was selected among other cerebellum parcellation software due 
to its previous validation in pediatric cohorts82. With ACAPULCO, 
FreeSurfer-preprocessed T1 images automatically went through N4 
bias field correction, Montreal Neurological Institute (MNI) registra-
tion, cerebellum parcellation (the program first predicts a bounding 
box around the cerebellum, crops out the cerebellum with this bound-
ing box, and uses a modified U-Net to parcellate it into subregions) and 
transform back to the original space. Then, volume for each subregion 
was calculated.

Statistical analyses
All statistical analyses were performed for ABCD data with R 3.6.3 and 
for Generation R data with SPSS. All statistical tests were two-sided.

Correlation between measures of psychopathology. Pearson r 
correlation coefficients were calculated for relationships between the 
12 measures of psychopathology (11 CBCL scales and PQ-BC) and pre-
sented as a correlation matrix (Fig. 1). The same was done in Generation 
R, although a different metric of psychosis spectrum symptoms was 
included instead of the PQ-BC, which was not collected in Generation R.

Associations between PGS and dimensional psychopathology. 
Due to variance both within and between the 22 ABCD Study sites, 
linear mixed effects models (lme4 package) were used to adjust for 
site as a random effect. In models investigating the effects of eight 
disorder-specific, one broad cross-disorder and three gSEM-derived 
PGSs on indices of psychopathology, age at baseline, sex and the top 
five principal components were included as fixed effects and site as a 
random effect. In Generation R, because data were collected from one 
site only, simple linear regressions (that is, without random effects) 
were used to calculate main effects of the three gSEM-derived PGSs, 
controlling for age, sex and the top five principal components.

PGS associations with baseline and emergent clinically mean-
ingful psychopathology. To determine the relevance of NDV poly-
genic risk on the emergence of psychopathology relative to other 
disorder-specific and cross-disorder scores, subjects were partitioned 
into quintiles based on their PGSs and coded according to presence of 
psychopathology above the clinical cutoff for CBCL Total (≥64)34. In 
baseline models (Extended Data Fig. 3), two groups were identified: 
one with CBCL Total scores at or above the clinical cutoff at baseline 
and another with scores below. In year 2 models, two groups were 
identified: one with CBCL Total scores at or above the clinical cutoff at 
year 2, but not baseline; another with scores below the cutoff at both 
baseline and year 2. Logistic regression models were used to determine 
the odds of having clinical-range psychopathology (CBCL Total ≥ 64) 
given membership in the top versus bottom PGS quintile.

Associations between PGS, psychopathology and brain structure. 
In models including imaging and genomics data from unrelated partici-
pants of European ancestry with scan ratings of 1, 2 or 3, site and scanner 
type were included as random effects and additionally the number of 
surface holes (Euler number) was included as a fixed effect, as were 
age, sex and intracranial volume. In the broader imaging set, which 
included participants of multiple ancestry groups and also 2,820 sibling 
participants, PGSs and principal components were omitted, but family 
ID was included as an additional random effect, as well as Euler number 
as a fixed effect. The FDR was used to correct for multiple comparisons 
within each set of models, which were treated hierarchically. First, four 
global measures of gray matter volume (total gray matter, cerebellum 
total gray matter, cortical gray matter and subcortical gray matter) 
were each tested for association with four clinical scales (CBCL Total, 
Internalizing and Externalizing, as well as PQ-BC), and FDR was used to 
correct for 16 comparisons (Supplementary Table 16). For global gray 
matter volumes that showed significant associations with any clini-
cal scale, follow-up tests were conducted that corrected for the total 
number of subregions and clinical scales (that is, 17 cerebellar subre-
gions × 4 clinical scales = 68 comparisons, Supplementary Table 17; 68 
cortical regions × 4 clinical scales = 272 comparisons, Supplementary 
Table 18; 17 subcortical regions × 4 clinical scales = 68 comparisons, 
Supplementary Table 19). As a sensitivity analysis, subjects with a 
structural quality control rating of 3 were excluded from models, and 
thus associations between brain volumes and psychopathology were 
measured only in subjects with the highest quality scans (N = 8,658).

Proportion of variance explained by PGS. To determine the predictive 
power of each PGS, R2 changes were calculated for models predicting 
broadband CBCL scales and PQ-BC. First, changes in R2 at each PGS 
threshold were calculated by building an initial model consisting of 
covariates (without PGS of interest) and then a second model that 
included PGS as a predictor. The R2 values of the initial models were 
subtracted from those of the second models. Although the main PGSs 
of interest were at P-threshold (Pt) 1.0, these analyses were performed 
at each Pt. Next, to determine the relative predictive power of NDV 
scores compared with other disorder-specific and cross-disorder 
PGSs, two more models per PGS were built: the initial model included 
a PGS at Pt 1.0 and covariates; the second model added NDV PGS at Pt 
1.0. The significance associated with the addition of NDV scores (that 
is, the P value of the NDV term in the model) is reported in Fig. 2c,d, 
Supplementary Fig. 1 and Supplementary Table 4. These same analyses 
were performed in Generation R (Supplementary Fig. 2, Extended Data 
Fig. 2c,d and Supplementary Table 8).

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All ABCD data are available via the NIMH Data Archive. For instructions 
on gaining access to ABCD data within this repository, refer to this page: 
https://nda.nih.gov/nda/access-data-info.html. ABCD data created in 
the current study can also be downloaded from the NDA (https://doi.
org/10.15154/1528597). For access to the Generation R dataset, requests 
can be sent to datamanagementgenr@erasmusmc.nl. BrainSpan Atlas 
of the Developing Brain gene expression data are available through 
their website (https://www.brainspan.org/static/download.html); 
1000 Genomes phase 3 data are available through this site: https://
www.internationalgenome.org/data-portal/data-collection; and sum-
mary statistics from the Psychiatric Genomics Consortium can be 
downloaded here: https://www.med.unc.edu/pgc/download-results/. 
GTEx v.8 RNA-seq data can be analyzed through FUMA’s pipeline 
(https://fuma.ctglab.nl/) and the raw data downloaded here: https://
gtexportal.org/home/datasets.

http://www.nature.com/natureneuroscience
https://nda.nih.gov/nda/access-data-info.html
https://doi.org/10.15154/1528597
https://doi.org/10.15154/1528597
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Code availability
Code for generation of polygenic scores, spatiotemporal gene expres-
sion analyses, imaging analyses and PGS-psychopathology analyses is 
available on GitHub (https://github.com/hughesdy/ABCD-NDV-CBC).
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Extended Data Fig. 1 | Pearson correlations among dimensional psychopathology measures in ABCD genotyped subjects only. (a, b) correlation matrix of 
psychopathology in genotyped males (top right of matrices) and females (bottom left of matrices) at ages 9- 10 (n = 4,459; A) and 11–12 (n = 3,360; B).

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01321-8

Extended Data Fig. 2 | Relationship between gSEM-derived PGS and 
psychopathology in the Generation R cohort. (a, b) Heatmaps showing 
uncorrected p-values from linear regression models regressing psychopathology 
on PGS covarying for age, sex, and top 5 principal components at age 9 (n = 1,850; 
A) and 13 (n = 1,791; B). Asterisks indicate p < 0.05 after False Discovery Rate 
correction for 36 comparisons (3 PGS x 12 measures of psychopathology). (c, d) 

Variance in CBCL Total accounted for by each gSEM-derived PGS. Uncorrected 
p-values (shown within the figure in black text near the y-max) represent the 
significance of the R2 change after adding NDV scores to base linear regression 
models including the respective PGS while covarying for age, sex, and top 5 
principal components (Pt =1). All regressions represented are two-sided.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 3 | Odds of clinical-range psychopathology (CBCL Total 
score ≥64) comparing the top to the bottom quintiles of PGS. Red represents 
odds of clinical-range psychopathology scores at baseline (age 9–10; n = 4,462). 
Blue represents odds of clinical-range psychopathology scores at year 2 (age 

11–12) but not baseline (age 9–10; n = 3,152). Linear mixed effects regressions 
(two-sided) are adjusted for age, sex, and the top 5 genetic PCs as fixed effects, 
and site as a random effect. Points represent estimated odds ratios and error bars 
indicate 95% confidence intervals around those estimates.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 4 | Regional gene expression patterns across the 
lifespan. Depicted are expression patterns of 12 of the most significant NDV 
genes (q < 0.009) using gene expression data from BrainSpan. Each plotted 
line represents expression across the lifetime within 1 of 6 regions (one color 
per region; black represents expression in the cerebellum). Vertical black 

line represents the delineation between prenatal and postnatal timepoints. 
Abbreviations: AMY, amygdala; CBC, cerebellar cortex; HP, hippocampus; MD, 
mediodorsal thalamus; NCX, neocortex; STR, striatum. (a, SORCS3; b, DUSP6;  
c, SEMA6D; d, CUBN; e, CCDC71; f, SLC30A9; g, CCDC36; h, STGAL3; i, KLHDC8B;  
j, LAMB2; k, FOXP2; l, VSIG10).

http://www.nature.com/natureneuroscience
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Extended Data Fig. 5 | Effects of cortical ROI volumes on dimensions of 
psychopathology. Linear mixed effects regressions (two-sided) are adjusted for 
age, sex, intracranial volume, and Euler number as fixed effects, and site, scanner, 

and family ID as random effects. Warmer colors represent more significant 
associations. P-values are corrected at the False Discovery Rate (number of 
comparisons = 272 [68 regions × 4 scales]).
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Software and code
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Data collection The NDA Download Manager Beta version 1.39.0 (https://nda.nih.gov/tools/nda-tools.html) was used to download ABCD data from NDAR. No 
custom or open source software was used for downloading data.

Data analysis R version 3.6.3 via RStudio version 1.2.5033 was used for all statistical analyses with ABCD data. SPSS version 28 was used for Generation R 
data analysis. PLINK v1.9 (https://www.cog-genomics.org/plink/), Shapeit v2 (https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/
shapeit.html#home), and IMPUTE2 (https://mathgen.stats.ox.ac.uk/impute/impute_v2.html) were used for genomic QC, prephasing, and 
imputation respectively. GenomicSEM software (available here: https://github.com/GenomicSEM/GenomicSEM) was used for genomic 
structural equation modeling. PRSice-2 (https://choishingwan.github.io/PRS-Tutorial/prsice/) was used to generate polygenic scores that were 
used for main analyses. PRS-CS (https://github.com/getian107/PRScs) was used to generate polygenic scores for a sensitivity analysis. Gene 
based association analyses were performed with FUMA version 1.3.7, a web based software (available here: https://fuma.ctglab.nl/). 
PANTHER version 17.0 was used for gene ontology analyses (http://www.pantherdb.org/), SynGO release 1.1 for synapse specific ontology 
analyses (https://www.syngoportal.org/). For whole brain MRI processing and analyses, Freesurfer version 7 was used (http://
surfer.nmr.mgh.harvard.edu/). For cerebellar segmentation ACAPULCO was used (https://gitlab.com/shuohan/acapulco). Custom code used 
for partitioning polygenic scores and other analyses can be found at https://github.com/hughesdy/ABCD-NDV-CBC.
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All ABCD data are available via the NIMH Data Archive. For instructions on gaining access to ABCD data within this repository, refer to this page: https://nda.nih.gov/
nda/access-data-info.html. ABCD data created in the current study can also be downloaded from the NDA (doi:10.15154/1528597). For access to the Generation R 
dataset, requests can be sent to datamanagementgenr@erasmusmc.nl. BrainSpan Atlas of the Developing Brain gene expression data are available through their 
website (https://www.brainspan.org/static/download.html); 1000 Genomes phase 3 data are available through this site: https://www.internationalgenome.org/
data-portal/data-collection; and summary statistics from the Psychiatric Genomics Consortium can be downloaded here: https://www.med.unc.edu/pgc/download-
results/. GTEx v8 RNAseq data can be analyzed through FUMA’s pipeline (https://fuma.ctglab.nl/) and the raw data downloaded here: https://gtexportal.org/home/
datasets.

Human research participants
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Reporting on sex and gender In the present analyses, correlations among dimensions of psychopathology were calculated and reported separately in boys 
and girls (see Figure 1). For all other analyses, sex was included as a covariate, however, analyses were not conducted 
separately in each category of sex. The sex variable that was used as a covariate in linear and mixed models was based on 
self-report by the participant; however, pre-imputation quality control of genotypic data included sex checks whereby 
subjects whose reported sex did not match their genotypic sex were removed from further analyses. As our intention with 
this project was to investigate PRS effects in children broadly, we did not conduct separate analyses in boys and girls. 
Furthermore, based on our initial investigation of sex-specific relationships among measures of psychopathology, clinical 
symptomology did not differ substantially between sexes.

Population characteristics Due to ABCD's recruitment strategy, the demographic variation of the recruited population mirrored that of 9- and 10-year 
olds living in the US. The demographics of Generation R participants were representative of the demographics of the 
recruitment area - Rotterdam, Netherlands. Data from children ages 9-13 were used from both populations. In ABCD, data 
were collected from 22 different study sites and baseline. As such, site ID was included as a random effect in all models to 
account for non-independence of data introduced by site effects. 

Recruitment Recruitment of ABCD participants was conducted largely through schools and targeted children ages 9-10. Generation R 
recruitment targeted pregnant women in Rotterdam early in pregnancy. Of note, ABCD oversampled twins and siblings, 
whose inclusion in genotype-to-phenotype analyses can inflate the effect of a variant/score due to shared environment. To 
eliminate unmeasured confounds introduced by this recruitment strategy, one participant per pair/group of siblings was 
retained for polygenic score analyses; in analyses of MRI data, for which all siblings from a sibling group were retained for 
analyses, family ID was included as a random effect.

Ethics oversight This research was deemed "non-human subjects research" by the Mass General Brigham IRB as it only used deidentified data. 
The majority of ABCD sites use an IRB which is located at the University of California San Diego site. The remaining sites 
obtained local IRB approval. Parents of ABCD participants provided written informed consent and participants provided 
assents. The Generation R study was approved by the Medical Ethical Committee of the Erasmus University Medical Center, 
Rotterdam. All Generation R participants provided written informed consent.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size The ABCD study recruited 11,878 children ages 9-10 and the Generation R study recruited 9,778 moms, from which 7,893 children were 
followed after birth. Samples were filtered according to exclusion criteria detailed below. Baseline ABCD genomic analyses consisted of 4,459 
subjects; year 2 ABCD genomic analyses of 3,360; age 9 Generation R analyses of 1,850; age 13 Generation R analyses of 1,791; ABCD 
imaging-only analyses of 10,076; and imaging-genomics analyses of 3,878. Although genomic analyses were restricted to a fraction of the total 
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recommendations for polygenic analyses (n=100). 

Data exclusions With ABCD subjects, only subjects of European ancestry as defined by self-report as well as principal components derived from the 1000 
Genomes Project Phase 3 data were retained for genetic analyses. Further, subjects were excluded if they were related (determined by either 
self-report or an identity-by-descent value >0.125). The resultant pool of ABCD subjects included in polygenic analyses totaled 4,459 subjects 
at age 9-10 and 3,360 at age 11-12. Similarly, in Generation R, only participants of European ancestry were retained for further analysis using 
identical methods as outlined above. The final size of the Generation R pool of subjects used for polygenic analyses was 1,850 at age 9 and 
1,791 at age 13. For MRI analyses, participants with poor quality scans (rated as 4 or 5; see Methods) were excluded, leaving 3,878 European 
participants and 10,076 multi-ancestry participants for the broader imaging analyses.

Replication Main findings (i.e., strength of association between NDV polygenic load and psychopathology) in the ABCD set were replicated in the 
Generation R data set, which consisted of a similarly aged population and which showed similar patterns of psychopathology.

Randomization This was an observational study and so participants were not randomized into groups. In genetic analyses in ABCD, age, sex, and the top 5 
genetic components were controlled for as fixed effects. Site ID was included as a random effect to account for non-independence of data 
introduced by data collection site. With Generation R analyses, identical covariates were included with the exception of the inclusion of site as 
a random effect since Generation R data were collected from a single area. In neuroimaging analyses, age, sex, and surface holes (Euler 
number) were included in models as fixed effects; site, family, and scanner IDs were included as random effects.

Blinding We used an observational design with group analyses excluding those meeting criteria discussed above; thus, blinding was not relevant for 
our analyses.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Magnetic resonance imaging

Experimental design

Design type Observational structural MRI study

Design specifications Not applicable.

Behavioral performance measures No behavioral performance measures.

Acquisition

Imaging type(s) Structural

Field strength 3 Tesla

Sequence & imaging parameters T1-weighted, gradient echo scans are collected in the ABCD study and were used in the present analysis. Scanning 
parameters for Siemens were: matrix of 256 x 256, 176 slices, FOV 256 x 256, TR=2500ms, TE=2.88ms, flip angle = 8; 
parameters for GE were identical except: 208 slices, TE=2ms

Area of acquisition Whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Freesurfer version 7.1.1, N4 Bias Field Correction, and ACAPULCO v0.3.0.

Normalization In Freesurfer, both linear and non-linear volumetric registration were performed via the recon-all command. In ACAPULCO, 
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Normalization NiftyReg was used to perform the MNI registration. Nearest-neighbor interpolation was used to transform the image back to 

the original space. 

Normalization template In Freesurfer, we used Gaussian Classifier Atlas file format encoding voxel label information. In ACAPULCO, ICBM 2009c 
nonlinear symmetric template was used.

Noise and artifact removal N4 Bias Field Correction was performed before Freesurfer's recon-all, which includes motion correction, NU intensity 
correction, and intensity normalization. ACAPULCO includes additional N4 Bias Field Correction.   

Volume censoring Not applicable

Statistical modeling & inference

Model type and settings After extraction of cortical ROI, subcortical ROI, and cerebellar lobule volumes, linear mixed models regressing 
psychopathology on included age, sex, and surface holes (Euler number) as fixed effects. Additionally, to account for non-
independence of data introduced by data collection site, scanner type, and family membership, site, scanner, and family IDs 
were included as random effects. In genetic analyses, top 5 genetic components were included as fixed effects and family ID 
was removed from the model as only one sibling per pair was included.

Effect(s) tested Effects of volumes on dimensional psychopathology (CBCL Total, Internalizing, Externalizing, and PQ-BC). 

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)
For cortical ROIs, the cortex was automatically parcellated into the 68 Desikan-Kiliiany regions. 
Subcortical regions were automatically mapped to the aseg atlas. Specific cerebellar regions were 
identified by ACAPULCO's parcellation. 

Statistic type for inference
(See Eklund et al. 2016)

Cortical volumes were calculated for predefined regions-of-interest as above and included in LMMs.

Correction False Discovery Rate was used to correct for multiple comparisons within each set of analyses (e.g., for models regressing 
psychopathology on global brain volume, multiple comparisons testing with FDR corrected for 4 [measures of 
psychopathology] x 4 [global brain volume measures]).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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