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a b s t r a c t

Background: Despite much interest in understanding the influence of contexts on health, most research
has focused on one context at a time, ignoring the reality that individuals have simultaneous member-
ships in multiple settings.
Method: Using the example of smoking behavior among adolescents in the National Longitudinal Study
of Adolescent Health, we applied cross-classified multilevel modeling (CCMM) to examine fixed and
random effects for schools and neighborhoods. We compared the CCMM results with those obtained
from a traditional multilevel model (MLM) focused on either the school and neighborhood separately.
Results: In the MLMs, 5.2% of the variation in smoking was due to differences between neighborhoods
(when schools were ignored) and 6.3% of the variation in smoking was due to differences between
schools (when neighborhoods were ignored). However in the CCMM examining neighborhood and
school variation simultaneously, the neighborhood-level variation was reduced to 0.4%.
Conclusion: Results suggest that using MLM, instead of CCMM, could lead to overestimating the
importance of certain contexts and could ultimately lead to targeting interventions or policies to the
wrong settings.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

There is much interest among epidemiologists in understand-
ing multilevel phenomena, or how features of the physical and
psychosocial environment in which individuals live, learn, work,
and play influence individual health, disease, and behavior (Pickett
and Pearl, 2001; Mair et al., 2008). The growth and interest in
multilevel analyses has been facilitated by conceptual develop-
ments in multilevel theory (Bronfenbrenner and Morris, 2006;
Stokols, 1996; Krieger, 2001; Dunn et al., 2014) as well as statistical
advancements in multilevel statistical modeling (Diez Roux, 1998;

2002; Raudenbush and Bryk, 2002; Subramanian et al., 2003).
Although multilevel theory posits that multiple contexts (e.g.,
residential environments, schools, workplaces, hospitals, or other
“areas”) influence individual and population health simulta-
neously, most empirical applications have studied contexts in
isolation and the majority of studies have focused on neighbor-
hoods. An emphasis on single contexts, and more specifically
neighborhoods, is problematic for at least two reasons. First, it
ignores the reality that individuals simultaneously belong to
multiple settings that could each independently affect their health.
For example, focusing on the influence of neighborhood factors on
adolescent health behaviors ignores the influence of schools,
which may be a more influential context in teens’ lives. Second,
results from studies assessing a single context may be misleading,
as the effect of one context can be over- or under-estimated
depending on what context is ignored.

The objective of our study was to provide a methodological
demonstration of cross-classified multilevel models (CCMM), also
sometimes referred to as “multilevel cross-classified models, or
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‘cross-classified random effect models”, in disentangling the role
of two critical influences on adolescent tobacco use: schools and
neighborhoods. CCMM allows researchers to incorporate non-
hierarchical nesting structures, where individuals are simulta-
neously nested within multiple non-hierarchical settings. Thus,
rather than modeling the effect of either the school or neighbor-
hood setting, as would be done in a traditional two-level multi-
level model (MLM), application of a CCMM enables researchers to
simultaneously examine the fixed and random effects correspond-
ing to the school and neighborhood settings. Simultaneous exam-
ination of schools and neighborhoods, in particular, is important
because both settings can influence health behaviors through
multiple pathways, including policies, normative behaviors, access
to resources, and the like (Kawachi and Berkman, 2003; Bonnell
et al., 2013). In this paper, our intention was to provide a
methodological demonstration of the CCMM method and show
where and how results from a CCMM might deviate from a
traditional multilevel model focused on a single context. A
methodological application and applied example of CCMM is
warranted, given the underrepresentation of CCMM in the epide-
miology literature relative to MLM (see for example Leyland and
Naess, 2008; Lloyd et al., 2010; Utter et al., 2011; Riva et al., 2009;
Moore et al., 2013; Virtanen et al., 2010; Basile et al., 2012).

Our demonstration proceeded in several steps. We first mod-
eled our outcome using a traditional multilevel modeling (MLM)
approach that included only one context (neighborhood or school)
per model. In other words, we modeled the school as a random
effect, ignoring the neighborhood in one MLM and then modeled
the neighborhood as a random effect, ignoring the school in a
second MLM. We then modeled tobacco use using CCMM, which
simultaneously accounts for the influence of schools and neigh-
borhoods. We compared both the fixed (i.e., population average
effects) and random effects (i.e., variance in the outcome) in
models assuming a two level hierarchy (MLM) versus those
allowing for multiple non-hierarchical memberships (CCMM).
The fixed effects we examined were individual-, school-, and
neighborhood-level demographic indicators, including socioeco-
nomic status and race/ethnicity. These fixed effect estimates are
informative for determining the extent to which both the predictor
of interest is associated with the outcome and the degree to which
the predictor of interest reduces between-level variation. Finally,
in our CCMM, we compared the relative variance contribution of
schools and neighborhoods. By comparing variance contributions
(i.e., random effects) across models, we are able to evaluate the
extent to which inclusion of the fixed effect variables helped to
explain the observed between-school and between-neighborhood
variation in smoking.

To increase the use of CCMM, and make the processes of ana-
lyzing cross-classified data more transparent, we provide readers
with instructions on how to implement the CCMM in MlwIN (refer
to Technical Appendix: Part 1 online) and through MlwIN as imp-
lemented via STATA (refer to Technical Appendix: Part 2 online).

2. Materials and methods

2.1. Data

Data for the study came from the National Longitudinal Study of
Adolescent Health (Add Health), a nationally representative school-
based longitudinal survey focusing on the health and behavior of
adolescents in middle and high school (grades 7–12; ages 12–18)
who were first interviewed in 1994–1995 (Wave 1) (Harris, 2013).
To ensure selected schools were representative of US schools,
researchers stratified schools by census region, urbanicity, size,
type, and ethnic background of the student body (i.e., percent

White) prior to systematic random sampling. From a sampling
frame of 26,666 schools, investigators selected a sample of 80 high
schools and 52 middle schools for participation. A systematic
random sample of high schools along with feeder schools (i.e.,
middle schools whose students matriculate at the selected high
school) was selected. A total of 134 schools (79%) participated.
These schools represented the spectrum of schools available to U.S.
students, including private schools requiring tuition, parochial or
religious based schools, and free public schools of which there are
schools of choice (i.e., any student can attend), magnet schools (i.e.,
schools that typically are available to students via an exam) and
neighborhood schools. An in-school survey was completed by
90,118 students. A random sample of these 90,118 students (as well
as all students who were eligible to complete the in-school survey,
but were absent on the day of administration) were invited to
complete a more detailed in-home interview. 20,745 students
completed the in-home interview (over 75% of those asked to
participate did so). In addition, 17,670 caregivers provided informa-
tion at Wave 1. AddHealth was an appropriate dataset to use in the
current analysis, as the sample was large and comprised ind-
ividuals who attended distinct school units and lived in distinct
residential neighborhoods (as defined by Census tracts, or the
relatively stable, geographic groupings of between 1200 and 8000
people, which vary by size, that are created by the United States
Census Bureau https://www.census.gov/geo/reference/gtc/gtc_ct.
html; defining neighborhoods based on Census tracts is common-
place among studies in the United States) (Dunn et al., 2014).

Our analyses are based on an analytic sample of 16,070 youth
who attended 128 schools and lived in 2111 census tracts. This
analytic sample was derived after eliminating youth (n¼660) in the
non-nationally-representative sample (i.e., who attended schools
sampled for genetic analyses) or from schools that did not provide
demographic data. We also removed youth who were missing data
on the outcome measure (n¼139 excluded) or predictors and
covariates (n¼1425). These 1425 participants did not differ with
respect to smoking behaviors from those who were included in our
analysis with respect to age sex, race, or parental education.
However, participants missing information about public assistance
tended to be smokers (34% smokers compared to 26% of non
smokers were missing information on public assistance; p¼0.002).

We restricted the analysis to youth who were white, black, or
Hispanic, excluding 2451 students of other races, given that
students in other racial/ethnic groups were not sufficiently repre-
sented in Add Health to obtain robust group estimates (Native
Americans n¼104, o1%; Asians n¼1176, 6%; Other n¼1171, 6%).
Although Add Health is a longitudinal study, we conducted a
cross-sectional analysis because the majority of youth resided in
the same neighborhood and school in Wave 2 as they did i n
Wave 1, and because Wave 3 and Wave 4 were conducted when
most youth had graduated from high school and so were no longer
uniformly in two different contexts.

2.2. Measures

2.2.1. Outcomes: Smoking
In the Wave 1 In-Home survey, youth reported the number of

days in the past month they smoked cigarettes. We coded responses
to this question into both a continuous (ranging from 1 to 30, i.e. the
number of days in past month) and binary outcome variable (yes/no
had ever smoked in the past month), consistent with previous
studies (Duncan and Rees, 2005; Alexander et al., 2001).

2.2.2. Predictors: Socioeconomic status (SES)
SES was obtained at the individual, school, and neighborhood

level. At the individual-level, SES was determined based on parent
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receipt of public assistance and parent education. We used data
from either the youth or caregiver interview to capture receipt of
public assistance (1¼mother currently receiving public assistance,
such as welfare; 0¼not) and highest level of parent education
(defined as the maximum level of education by the resident
mother, resident father, or resident step-father/partner; 1¼parent
did not have at least a high school diploma or equivalent;
0¼parent had completed high school/equivalent). At the school-
level, we created a continuous measure of school-level SES using
individual-level data. Use of individual-level data was required as
information about school-level SES was not directly available. We
calculated the proportion of students within each school whose
mother had received public assistance or did not have a high
school degree or equivalent. At the neighborhood level, we used
data from the 1990 Census to create a neighborhood-level SES
measure indicating the proportion of residents within each neigh-
borhood who had received public assistance or did not have at
least a high school degree or equivalent.

2.2.3. Covariates
Adjusted models included the following individual-level covari-

ates: age (continuous), sex (male¼0; female¼1), and self-reported
race/ethnicity (1¼non-Hispanic white; 2¼non-Hispanic black;
3¼Hispanic). We also adjusted for the percentage of students in
either the school or the neighborhood who were white.

2.3. Analysis

We fit three sets of models in the current analysis. The first two
models used a traditional two-level multilevel model. As described
in detail elsewhere (Diez Roux, 1998; 2002; Raudenbush and Bryk,
2002; Subramanian et al., 2003), the traditional multilevel model
assumes a two-level multilevel data structure, where observations
are hierarchically nested, such that members of the lower level (i.e.,
level one) are nested in one and only one entity at the higher level
(i.e., level two). Thus, we began by fitting a two-level “school only”
multilevel model (ignoring the neighborhood), where the outcome
(denoted y) for a person (denoted i) nested in a given school
(denoted j) was modeled as:

yij ¼ β0þβxijþu0 jþe0 ij ð1Þ

In Eq. (1), the fixed effect parameter β0 refers to the overall
mean outcome y across all schools and βxij refers to a vector of
individual-level covariates. The random effect parameter uoj refers
to the random effect for school (assumed to be normally distrib-
uted with a mean of 0 and variance σ2uo), and eoij refers to the
random effect for the individual.

Second, we ran a two-level “neighborhood only” multilevel
model (ignoring school), where the outcome (denoted y) for a
person (denoted i) nested in a given neighborhood (denoted k)
was modeled as:

yik ¼ β0þβxikþu0 kþe0 ik ð2Þ

The fixed and random effect parameters in Eq. (2) have an
identical interpretation as Eq. (1), except they now refer to
neighborhoods (instead of schools). Though the two-level multi-
level modeling strategy marks a significant advancement over
traditional regression models in which context is ignored, it is not
flexible enough to accommodate multiple non-nested contexts
at once.

The third model we fit was the CCMM. In a CCMM, individuals
(denoted i) simultaneously belong to two non-nested contexts,
here school (denoted j) and neighborhood (denoted k). Thus our
outcome (denoted y) for a person i nested in school j and

neighborhood k is modeled as:

yi ðj kÞ ¼ β0þu0 jþu0 kþe0 i ðj kÞ ð3Þ

In Eq. (3), which presents a null or intercept-only CCMM (i.e., a
model without covariates), the fixed effect parameter, β0, refers to
the overall mean outcome y across all schools and neighborhoods,
uoj refers to the random effect for schools, uok refers to the random
effect for the neighborhood, and eoiðjkÞ refers to the random effect
for the individual with the combination of j school and k
neighborhood. Like a traditional multilevel model, the CCMM
variance parameters are assumed to be independent of each other
and normally distributed, with a mean of 0 and variance that is
estimated (i.e., σ2uo).

This CCMM null model can be extended to include predictors or
covariates (i.e., fixed effects) at each level of analysis. For example,
we included two indicators of SES; the first was a measure of
receipt of public assistance at the individual ðβ1oiðjkÞ Þ, school ðβ2oj

Þ,
and neighborhood-level ðβ3ok Þ:
yi ðj kÞ ¼ β0þβ1o i ðj kÞ þβ2o j

þβ3o k
þuo jþuo kþeo i ðj kÞ ð4Þ

The parameters in Eq. (4) are interpreted differently than Eq.
(1). For example, β2oj

refers to the average effect of school-level
parent receipt of public assistance controlling for individual and
neighborhood parent receipt of public assistance, and β3ok

refers to
the average effect of neighborhood-level parent receipt of public
assistance controlling for individual and school parent receipt of
public assistance. The interpretation of each random effect para-
meter is the same, except each estimate now controls for the
parent receipt of public assistance predictors in the model.

Our analyses proceeded in three steps. First, to partition the
variance in number of days smoked into within and between
components and estimate an intraclass correlation coefficient (ICC;
i.e., the proportion of variation in the outcome that was due to
differences across schools and neighborhoods, rather than differences
across students), we estimated a null model for each model type:
school-only multilevel model (Eq. (1)), neighborhood-only multilevel
model (Eq. (2)), and the CCMM (Eq. (3)) (Table 2, Model 1). These ICC
estimates were obtained for the school-only multilevel model,
neighborhood-only multilevel model, and CCMM. The ICCs in the
school-only and neighborhood-only multilevel model were generated
by dividing the between-level random effect by the total variance. In
the CCMM, we calculated ICCs for the school and neighborhood level,
which are referred to as the intra-neighborhood (i.e., correlation in
outcome between two youth who live in the same neighborhood, but
attend different schools; this was calculated by dividing the
neighborhood-level random effect by the total variance, or the sum
of the three variance components) and intra-school correlation coeffi-
cient (i.e., correlation in outcome between two youth who attend the
same school, but live in different neighborhoods; this was calculated
by dividing the school-level random effect by the total variance). We
also calculated an intracell correlation, referring to the correlation in
outcome of two students who live in the same neighborhood and
attend the same school; this was calculated by summing the between-
level variances, i.e., for the neighborhood and school, by the total
variance. Subsequently, we estimated a model that contained
individual-level predictors and covariates (Model 2). By including
these individual-level variables, we were able to evaluate the extent
to which the between-level variance estimates (i.e., random effect
parameters) could be explained by the observed individual character-
istics across schools and neighborhoods. We then fit a school-only
model and CCMM containing individual-level variables as well as the
school-level measures of SES and race/ethnicity (Model 3) and a
neighborhood-only model and CCMM containing individual-level
variables combined with the neighborhood-level measures of SES and
race/ethnicity (Model 4). Finally, we fit a CCMM containing all indi-
vidual-, school-, and neighborhood-level variables (Model 5).
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All analyses were conducted in MLwiN version 2.29 via Stata
version 13 (College Station, TX) with Bayesian estimation proce-
dures as implemented via Markov Chain Monte Carlo (MCMC)
methods using Metropolis–Hastings algorithm (Browne, 2004).
We used a Bayesian estimation procedure with non-informative
priors, because others have shown that estimates of random
effects in binary models using maximum-likelihood procedures
tend to be biased (Rodriguez and Goldman, 1995) and computa-
tionally intensive (Rabash and Browne, 2001) and that MCMC is
preferable when two sets of random effects are estimated, when
there is concern about the correlation between random effects,
and when there are some instances of a small number of
individuals per cluster. Model fit was evaluated using the Deviance
Information Criterion (DIC), which is a test statistic produced by
the MCMC procedure that refers to the model complexity and
“badness of fit”. Higher DIC values indicate a poorer fitting model.
We calculated a linear regression for the continuous outcome and
a logistic regression for the binary smoking variable; no other link
functions (e.g., log) were available in MlwiN. Parameter estimates
(betas or odds ratios, OR) and 95% credible intervals (CI, which are
the confidence intervals generated using Bayesian procedures) are
presented for fixed and random effect parameters. We examined
residual plots at each level of analysis to evaluate model diagnos-
tics on the variance parameter; this enabled us to test model
assumptions, detect outliers and influence points on model fit.
Analyses were conducted using unweighted data, as weighting
techniques for cross-classified methods have not been established
(Raudenbush and Bryk, 2002). A non-weighted analysis is also
appropriate as our emphasis was on tests of association, rather
than deriving nationally representative estimates, and we adjusted
our analyses for sample characteristics and thus reduced the
heterogeneity in the sample (Lee and Forthofer, 2006).

3. Results

The AddHealth data were suited to cross-classified analyses. An
average of 125.5 (sd¼116.5) youth per school completed an In-
Home survey (minimum¼18; maximum¼1012). In each

neighborhood, an average of 7.6 (sd¼18.5) youth completed an
In-Home survey (minimum¼1; maximum¼260). There were 970
(of 2111) census tracts that contained only one youth respondent.
There was an average of 20.2 (sd¼22.0) census tracts per school
(minimum¼1; maximum¼175), an average of 1.22 (sd¼0.42)
schools per census tract (minimum¼1; maximum¼3), and 2584
different combinations of school and neighborhood contexts. Thus,
there was no clear hierarchical nesting of schools within neighbor-
hoods (or vice versa).

Table 1 presents descriptive statistics on individuals in the total
sample as well as by smoking status. 26% of youth (n¼4162)
smoked at least once in the past month, with smokers reporting
smoking an average of 16.2 days per month (sd¼12.3). The sample
was balanced in terms of sex (49% male). The majority of
participants were white (58%) and were in mid-adolescence (mean
age¼15.6; sd¼1.7). Parent SES was relatively high, as only 10% of
mothers were currently receiving public assistance and only 13%
had less than a high school education. Smokers were more likely
than non-smokers to be white (po0.001), older in age; po0.001),
and have a parent without at least a high school degree (p¼0.05).
No differences were found when comparing smokers to non-
smokers by sex or receipt of public assistance. Among smokers,
whites reported smoking more days than either Blacks or Hispa-
nics (po0.001) as did those whose parent did not receive public
assistance (p¼0.005) and who were older (po0.0001).

The schools and neighborhoods in this sample were diverse.
Schools varied significantly with respect to their SES. Across the
128 schools, the average percentage of students whose mothers
had received public assistance was 10.4% (sd¼9.4; minimum¼0;
maximum¼45.4%), the average percentage whose parents did not
have at least a high school education was 11.5% (sd¼10.4; mini-
mum¼0%; maximum¼55.8%) and the average percentage report-
ing White race was 47.5% (sd¼25.5; minimum¼0%; maximum¼
85.9%). Similarly, across the 2111 neighborhoods, the average
percentage of students whose mothers had received public assis-
tance was 10.8% (sd¼10.0; minimum¼0; maximum¼67.5%), the
average percentage of residents without at least a high school
education was 29.2% (sd¼16.1; minimum¼0%; maximum¼78.7%)
and the average percentage reporting white race was 66.6%

Table 1
Descriptive Statistics on Individuals (n¼16,070) in the National Longitudinal Study of Adolescent Health (AddHealth).

Demographic characteristics Total sample
(n¼16,070)

Non-smokers
11,908 (74%)

Smokers
4,162 (26%)

p-Value† Number of days
smoked median (IQR)

p-Value††

Child sex
Male 7,948 (49%) 5,847 (49%) 2,101 (50%) 0.13 15.0 (27.0) 0.74
Female 8,122 (51%) 6,061 (51%) 2,061 (50%) 15.0 (27.0)

Mother received public assistance
No 14,502 (90%) 10,753 (90%) 3,749 (90%) 0.68 15.0 (27.0) 0.005
Yes 1,568 (10%) 1,155 (10%) 413 (10%) 10.0 (28.0)

Parent obtained high school degree
No 2,120 (13%) 1,608 (14%) 512 (12%) 0.05 12.0 (28.0) 0.31
Yes 13,950 (87%) 10,300 (86%) 3,650 (88%) 15.0 (27.0)

Child race
White 9,387 (58%) 6,304 (53%) 3,083 (74%) o .0001 20.0 (26.0) o .0001
Black 3,817 (24%) 3,348 (28%) 469 (11%) 4.0 (12.0)
Hispanic 2,866 (18%) 2,256 (19%) 610 (15%) 10.0 (27.0)

Child age†††

11–13 2,299 (14%) 1,991 (17%) 308 (7%) o .0001 5.0 (18.0) o .0001
14–16 8,352 (52%) 6,194 (52%) 2,158 (52%) 15.0 (27.0)
17þ 5,419 (34%) 3,723 (31%) 1,696 (41%) 20.0 (25.0)

Cell entries are reported as n (%) comparing smokers to non-smokers. Number of days smoked among those who smoke within demographic groups is reported as median
interquartile range (IQR) due to the bimodal distribution.

† Chi-square tests or t-test where appropriate comparing smokers to non-smokers within demographic groups.
†† Wilcoxon rank-sum test or Kruskal–Wallis test where appropriate comparing median number of days reporting smoking across demographic groups.
††† Child age is presented here as categories, however, it was modeled as a continuous variable in our models.
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(sd¼33.3; minimum¼0%; maximum¼100%). The average number
of days smoked (school mean¼3.73; sd¼2.50; neighborhood
mean¼3.76; sd¼7.15) and percentage of respondents who were
considered smokers (school mean¼23.9%; sd¼11.0; neighborhood
mean¼23.4%; sd¼33.6) was similar across neighborhoods and
schools. However, as shown in Figs. 1 and 2, there was consider-
able variability within and between these contexts with respect to
youth smoking. For example, in some neighborhoods almost 80%
of youth were smokers, whereas in others 0% were smokers
(Fig. 2). Moreover, as shown in Fig. 3, schools differed with respect
to both the average number of days youth smoked and the
variability (minimum and maximum) in numbers of days smoked.
Thus, smoking behaviors were not uniform, but rather varied as a
result of neighborhood or school context.

The data were also suited to cross-classified analyses based on
the observed differences in contexts youth experienced. That is,
youth did not always attend schools that reflected the demo-
graphic makeup of their neighborhoods. Though there were
moderate to high correlations between school and neighborhood
demographic characteristics (r¼0.556; po0.0001 for school and
neighborhood percent receiving public assistance; r¼0.587;
po0.001 for school and neighborhood parental education;
r¼0.705; po0.001 for school and neighborhood percent of
population identified as white), the correlations varied across
these indicators and provided evidence of some discordance
between the neighborhood and school. Indeed, after dichotomiz-
ing the public assistance measure to differentiate poor schools and
neighborhoods from non-poor schools and neighborhoods (using a
cut-point of 10% of more of the population receiving public
assistance to denote a high poverty setting, similar to previous
studies; Leventhal and Brooks-Gunn, 2003), we found close to
one-quarter of all youth lived in incongruent settings. That is,
13.7% (n¼2.200) of youth lived in a low poverty neighborhood, but
attended a high poverty school and 10% (n¼1.645) lived in a high
poverty neighborhood, but attended a low poverty school. A
McNemar’s chi-square test of the agreement between the neigh-
borhood and school poverty measures was significant (chi-square
80.1; po0.0001), indicating that there was not perfect agreement
between school and neighborhood poverty.

3.1. Multilevel models with smoking as continuous outcome

Tables 2 and 3 present the results of a series of models for the
school-only multilevel model, neighborhood-only multilevel model,
and the CCMM predicting the number of days smoked. In our null
model (Table 2, Model 1), the random effects for the school-only
ðσ2u0j ¼ 5:44Þ and neighborhood-only model ðσ2u0k ¼ 4:58Þ were simi-
lar. However, in the CCMM, the between-level variance in smoking
was driven largely by the school σ2u0j ¼ 5:36 and not by the nei-
ghborhood ðσ2u0k ¼ 0:46Þ. Comparable ICC values were obtained for
the school-only (6.1%) and neighborhood-only multilevel model
(5.2%), indicating that the majority of the variability was attribu-
table to individual characteristics. In the CCMM, the intra-
neighborhood correlation was 0.52% and the intra-school correla-
tion was 6.1%. Finally, the intracell correlation coefficient, or the
correlation in smoking behavior between two youth who live in the
same neighborhood and attend the same school, was 6.5%.

When individual-level covariates were added to these three models
(Table 2, Model 2), the between-level variance declined by more than
half relative to Model 1 (school-only σ2u0j ¼ 2:12; neighborhood only
σ2u0k ¼ 1:59; and CCMM (σ2u0j ¼ 0:24; σ2u0k ¼ 2:08). This decline sug-
gests that the between-level variation in smoking was due largely to the
observed individual characteristics across schools and neighborhoods.

Model 3 (see Table 3) introduced school-level SES indicators
and covariates into the school-only multilevel model and CCMM.
When these school-level variables were added, the school-level
variance declined slightly compared to Model 2 for both the
school-only (σ2u0j ¼ 1:83 from 2.12) and CCMM (σ2u0j ¼ 1:78 from
2.08). The neighborhood-level variance in the CCMM of Model
3 decreased slightly relative to the CCMM in Model 2 (σ2u0k ¼ 0:17
from 0.24). There was a modest association detected between the
percentage of students in the school whose mother had received
public assistance and number of cigarettes smoked in the school-
only (β¼0.07) or CCMM (β¼0.07). There was no association
detected between the percentage of students whose parents did
not have a high school degree in the school-only multilevel model
(β¼�0.04) or CCMM (β¼�0.04). There was also a very small
association for the percentage of students who were white in the
school-only multilevel (β¼0.02) or CCMM (β¼0.02).

Fig. 1. Distribution of the number of days reported smoking in the Past 30 Days
Across Schools (N¼128) and neighborhoods (N¼2111 neighborhoods). Box plots
are presented depicting the number of days youth reported smoking in the past 30
across all schools and neighborhoods. The solid colored dot represents the mean.
Horizontal lines in the boxes represent the first quartile, the median, and the third
quartile of the distribution of smoking values. Vertical lines depict the 1.5 times the
interquartile range of smoking for each school or neighborhood in the sample. Dots
outside depict outlying values. The large number of outliers for neighborhoods was
due largely to the neighborhoods including only a small number of respondents.

Fig. 2. Distribution of the proportion of youth reporting smoking in the Past 30
Days Across Schools (N¼128) and Neighborhoods (N¼2111 neighborhoods). Box
plots are presented depicting the proportion of youth reporting smoking in the past
30 across all schools and neighborhoods. The solid colored dot represents the
mean. Horizontal lines in the boxes represent the first quartile, the median, and the
third quartile of the distribution of smoking values. Vertical lines depict the
1.5 times the interquartile range of smoking for each school or neighborhood in
the sample. Dots outside depict outlying values.
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Model 4 (see Table 3) introduced neighborhood-level SES
indicators and covariates into the neighborhood-only multilevel
model and CCMM. Adding these variables led to a slight decrease
in neighborhood-level variance for the neighborhood-only multi-
level model (σ2u0k ¼ 1:52 from 1.59) and a larger decrease in the
CCMM (σ2u0k ¼ 0:16 from 0.24). The school-level variance in the
CCMM of Model 4 was nearly identical (σ2u0j ¼ 2:06 compared to

2.08). Neighborhood-level values of public assistance were not
associated with number of cigarettes smoked for either the
neighborhood-only (β¼0.03) or CCMM (β¼0.01), nor were neigh-
borhood values for residents without a high school degree for
either the neighborhood-only (β¼�0.01) or CCMM (β¼0.01), or
percentage white for either the neighborhood-only (β¼0.01) or
CCMM (β¼0.01).

Table 2
Nested Models Describing Association between predictors and number of days smoked in the Past 30 Days in the National Longitudinal Study of Adolescent Health
(N¼16,070).

Fixed effect estimates Model 1 Model 2

School only Neighborhood only Cross-classified School only Neighborhood only Cross-classified

Intercept (SE) 3.8 (0.23) 3.94 (0.11) 3.88 (0.22) �6.94 (0.84) �7.42 (0.73) �6.91 (0.84)

Individual-level
Age 0.80 (0.70, 0.90) 0.85 (0.76, 0.93) 0.80 (0.70, 0.90)
Female 0.06 (�0.22, 0.34) 0.02 (�0.26, 0.30) 0.06 (�0.22, 0.34)
Public assistance 0.76 (0.27, 1.25) 0.84 (0.34, 1.34) 0.74 (0.26, 1.24)
High school degree �0.21 (�0.66, 0.25) �0.15 (�0.62, 0.29) �0.21 (�0.67, 0.23)
Race

White Ref Ref Ref
Black �4.28 (�4.73, �3.86) �4.57 (�4.96, �4.16) �4.29 (�4.71, �3.86)
Hispanic �1.98 (�2.49, �1.48) �2.86 (�3.32, �2.38) �1.99 (�2.50, �1.48)

School-level
Public assistance
High school degree
Percent White

Neighborhood-level
Public assistance
High school degree
Percent White
Random effect estimates
U3 neighborhood (SE) 4.58 (3.66, 5.65)n 0.46 (0.13, 0.88)n 1.59 (1.03, 2.26)n 0.24 (0.06, 0.61)n

U2 school (SE) 5.44 (4.04, 7.19)n 5.36 (3.95, 7.07)n 2.12 (1.48, 2.97)n 2.08 (1.42, 2.92)n

U1 individual (SE) 83.1 (81.3, 85.0)n 84.0 (82.1, 85.9)n 82.7 (80.9, 84.6)n 80.7 (79.0, 82.5)n 81.1 (79.3, 83.0)n 80.5 (78.8, 82.3)n

Fit Statistics
DIC – – 116,736 – – 116,259

Model 1 presents the results for a null model (i.e., no covariates) for each model type: school-only multilevel model, neighborhood-only multilevel model, and the cross-
classified multilevel model. Model 2 presents the same models as Model 1, except Model 2 includes individual-level predictors and covariates. For the fixed effect estimates,
cell entries are parameter (beta) estimates and credible intervals. The intercept is presented as parameter estimate and standard error (SE). Random effects are presented as
estimate and credible intervals. DIC refers to Deviance Information Criterion, a measure of model fit and complexity and is only reported for the cross-classified models.

n Significant random effects are indicated by po0.05.

Fig. 3. Distribution of the Number of Days Youth Reported Smoking in the Past 30 Within and Between Schools (N¼128 schools). Dots represent the mean number of days
youth reported smoking within each school. 95% bounds around the mean based on the standard deviation (SD) of number of days smoked are also presented. Values are
sorted from left to right by lowest school mean. 95% confidence intervals may extend into the negative range when the mean smoking days within a school is not
significantly different from zero.
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Results of Model 5 (see Table 3), which introduced both school-
and neighborhood-level SES indicators and covariates into the
CCMM, showed that the neighborhood-level variance increased
compared to Model 4 (σ2u0k ¼ 0:25 from 0.16). The school-level
variance declined slightly compared to Model 4 (σ2u0j ¼ 1:71 from
2.06). Modest associations between school-level public assistance
(β¼0.07) and percentage white (β¼0.02) persisted, as did the lack
of association between any of the neighborhood-level indicators.

Post-hoc evaluation of these models suggested the results were
robust. With the exception of the neighborhood random effect
estimates, all other standard errors were small relative to the
parameter estimates, suggesting the variances were estimated
with a good level of precision. However, the standard errors for
the variance components were inflated in the multilevel models in
particular. The fixed effect estimates were similar between the
CCMM and multilevel models. Residual plots suggested that the
model assumptions were not violated in our final model.

3.2. Multilevel models with smoking as binary outcome

Web Table 1 and Web Table 2 present the results of models
with smoking as a binary outcome. The same overall conclusions
can be drawn from these models as the models focusing on the
outcome for number of days reported smoking. Fig. 4 presents the
variance estimates at the school- and neighborhood-level for the
school-only multilevel model, neighborhood-only multilevel
model, and CCMM predicting odds of smoking. As seen in this
figure, the school- (Model 3) and neighborhood-only multilevel
models (Model 4) both identify a modest degree of between-level
variation. In other words, the school-level multilevel model
suggests there is a significant degree of between-school variation

in the odds of smoking, while the neighborhood-level multilevel
model suggests there is a significant degree of between-
neighborhood variation in the odds of smoking. However, the
results of the CCMM (Model 5) suggest that the between-level
variation in smoking is driven primarily by school-level variation
and not neighborhood-level variation.

3.3. Sensitivity analysis

We ran a sensitivity analysis to address possible concerns
regarding the distribution of students in schools versus neighbor-
hoods. Using Model 5 for both outcomes, we evaluated whether
similar results would be obtained if we included an indicator
variable adjusting for the number of youth in each neighborhood
(0¼ included more than one respondent; 1¼ included only one
respondent). This allowed us to determine whether the neighbor-
hoods with only one respondent (n¼970) had a different effect on
smoking relative to the neighborhoods that contained a greater
number of respondents. As shown in Web Table 3, there was no
relationship between the indicator variable and either the con-
tinuous (β¼0.44; CI¼�0.17, 1.05) or binary smoking outcome
(OR¼1.06; CI¼0.89, 1.24). Fixed and random effect parameters in
the models including the indicator variable were also nearly
identical to the final CCMM. These findings suggest our results
were not influenced by one-respondent neighborhoods.

4. Discussion

This paper demonstrated the value of cross-classified multi-
level models (CCMM) to ascertain the quantitative importance of

Table 3
Nested Models Describing Association between predictors and number of days smoked in the Past 30 Days in the National Longitudinal Study of Adolescent Health
(N¼16,070).

Fixed effect estimates Model 3 Model 4 Model 5

School only Cross-classified Neighborhood only Cross-classified Cross-classified

Intercept (SE) �8.26 (0.96) �8.24 (0.97) �8.62 (0.86) �7.67 (1.02) �8.43 (1.04)

Individual-level
Age 0.81 (0.71, 0.91) 0.81 (0.71, 0.91) 0.85 (0.76, 0.93) 0.80 (0.70, 0.90) 0.81 (0.72, 0.91)
Female 0.07 (�0.20, 0.34) 0.06 (�0.22, 0.34) 0.02 (�0.25, 0.3) 0.06 (�0.22, 0.34) 0.06 (�0.21, 0.34)
Public assistance 0.70 (0.20, 1.18) 0.69 (0.19, 1.20) 0.81 (0.31, 1.31) 0.72 (0.22, 1.23) 0.68 (0.19, 1.18)
High school degree �0.24 (�0.69, 0.21) �0.24 (�0.69, 0.22) �0.19 (�0.64, 0.29) �0.19 (�0.64, 0.28) �0.21 (�0.68, 0.24)
Race

White Ref Ref Ref Ref Ref
Black �4.10 (�4.55, �3.64) �4.11 (�4.56, �3.63) �4.19 (�4.70, �3.7) �4.20 (�4.72, �3.68) �4.11 (�4.63, �3.61)
Hispanic �1.81 (�2.33, �1.29) �1.80 (�2.32, �1.27) �2.71 (�3.18, �2.24) �2.00 (�2.51, �1.48) �1.83 (�2.36, �1.30)

School-level
Public assistance 0.07 (0.02, 0.12) 0.07 (0.02, 0.12) 0.07 (0.02, 0.12)
High school degree �0.04 (�0.08, 0.01) �0.04 (�0.08, 0.004) �0.04 (�0.09, 0.0001)
Percent White 0.02 (0.003, 0.03) 0.02 (0.003, 0.03) 0.02 (0.002, 0.03)

Neighborhood-level
Public assistance 0.03 (�0.01, 0.06) 0.01 (�0.03, 0.05) �0.005 (�0.04, 0.03)
High school degree �0.01 (�0.02, 0.01) 0.01 (�0.01, 0.03) 0.01 (�0.01, 0.03)
Percent White 0.01 (0.004, 0.02) 0.01 (�0.005, 0.02) 0.0002 (�0.01, 0.01)
Random effect estimates
U3 neighborhood (SE) 0.17 (0.04, 0.42)n 1.52 (0.96, 2.18)n 0.16 (0.03, 0.37)n 0.25 (0.05, 0.52)n

U2 school (SE) 1.83 (1.22, 2.64)n 1.78 (1.15, 2.59)n 2.06 (1.39, 2.91)n 1.71 (1.10, 2.48)n

U1 individual (SE) 80.7 (79.0, 82.5)n 80.6 (78.8, 82.3)n 81.1 (79.3, 83.0)n 80.6 (78.8, 82.3)n 80.5 (78.8, 82.3)n

Fit statistics
DIC – 116,258 – 116,261 116,265

Model 3 presents the results of the school-only multilevel model and CCMM containing individual-level variables as well as the school-level measure of SES and race/ethnicity.
Model 4 presents the results of the neighborhood-only multilevel model and CCMM containing individual-level variables combinedwith the neighborhood-levelmeasure of SES and
race/ethnicity. Model 5 presents the results of a CCMM containing all individual-, school-, and neighborhood-level variables. For the fixed effect estimates, cell entries are parameter
(beta) estimates and credible intervals. The intercept is presented as parameter estimate and standard error (SE). Random effects are presented as estimate and credible intervals.
DIC refers to Deviance Information Criterion, a measure of model fit and complexity and is only reported for the cross-classified models.

n Significant random effects are indicated by po0.05.
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more than one context simultaneously. One very salient finding
emerged from the current study. We found that two-level multilevel
models that do not account for other non-nested contexts in which
individuals are embedded can produce misleading results. In the
current case, which focused on adolescent smoking, we found that
the role of neighborhoods was overestimated. Specifically, the two-
level multilevel model that examined neighborhoods without con-
sidering schools suggested that 5.2% of the variation in smoking was
due to differences between neighborhoods. However, the neighbor-
hood variation was reduced to 0.52% after running a CCMM that
considered the role of schools. Thus, had we estimated only a
neighborhood-level multilevel model, and not estimated a CCMM
that accounted for the random effect of both schools and neighbor-
hoods, we would have misattributed more of the variance in
smoking to neighborhoods and missed the contribution of schools.
These results are consistent with previous studies, which have found
that failing to account for cross-classified data structures will produce
biased variance estimates, such that the variance associated with the
omitted level (e.g., school) will be attributed to the included level (e.
g., neighborhood) (Meyers and Beretvas, 2006). Model misspecifica-
tion will be most problematic when there is substantial between-
level variation in the higher level unit that is omitted (Goldstein,
1994) and when the two higher-level units are independent (Meyers
and Beretvas, 2006).

Results from our methodological demonstration of CCMM should
be evaluated in light of several limitations. First, the analyses are
based on a nationally-representative sample of adolescents drawn
from a study that selected youth using school-based sampling. As a
result, the number of individuals per neighborhood was smaller than
the number of individuals per school, with some neighborhoods only
having one respondent. The fact that we did observe meaningful
cross-classification of neighborhood and school units, combined with
the finding that there was significant neighborhood-level variation in
smoking to be explained in the two-level multilevel model, suggests
that data sparseness was likely not an issue here. While it is possible
our results reflect the greater number of individuals per school rather
than neighborhood, we think this is unlikely, as preliminary analy-
ses we conducted in Add Health using CCMM to examine other
health outcomes did find meaningful effects for neighborhoods

(results available from the author). However, future research should
conduct simulation work and also use the CCMM framework in
neighborhood-based studies to evaluate the degree to which sam-
pling methods contribute to these findings.

Second, AddHealth Wave 1 data were also collected more than a
decade ago. Although these data may be considered old, AddHealth
remains the only nationally-representative sample of adolescents in the
US and one of very few in which school and neighborhood level data
are available. AddHealth was therefore an appropriate dataset to
demonstrate the value of the CCMM framework. Third, we did not
complete a detailed investigation into the predictors of smoking, as our
example was intended to be a methodological and practical illustration
of the CCMM. Inclusion of other potentially relevant factors, when
modeled as fixed effects, such as smoking-related policies, measures of
social cohesion, will be important for shedding light on the determi-
nants of smoking behavior as well as the between-school and between-
neighborhood differences in smoking. Fourth, there are limitations with
using Census tracts to define neighborhoods. Although Census Tracts
are an imperfect measure to define neighborhoods, they are most
commonly used in multilevel research (Dunn et al., 2014). Future
studies should expand upon traditional boundaries of neighborhood
to focus on other aspects of the residential environment (e.g., activity
spaces; neighborhoods as defined by residents rather than adminis-
trative datasets). Finally, our school-level measures of socioeconomic
status are limited in that they were aggregated directly from individual-
level data. This may be problematic, particularly as our measure of
public assistance was based on whether mothers’ (and not fathers’)
reported receiving assistance. Though a common approach inmultilevel
research (Dunn et al., 2014), future studies should use administrative or
school-level data when available in order to avoid the concerns about
the indicators being a reflection of the students in the sample.

What implications can be drawn from our findings? First, our
results emphasize the need to extend current analytic approaches
from the basic multilevel model to examine cross-classification.
Although there have been some studies using CCMM (see for
example Leyland and Naess, 2008; Lloyd et al., 2010; Utter et al.,
2011; Riva et al., 2009; Moore et al., 2013; Virtanen et al., 2010;
Basile et al., 2012), the CCMM method is not being used nearly as
much as it should be, most likely due to a lack of applied examples.

Fig. 4. Variance estimates at the school- and neighborhood-level for the school-only multilevel model, neighborhood-only multilevel model, and Cross-Classified Multilevel
Model Predicting Odds of Smoking. Model 3 includes individual-level covariates as well as school-level SES indicators and covariates. Model 4 includes neighborhood-level
covariates as well as neighborhood-level SES indicators and covariates. Model 5 includes individual-level, school-level, and neighborhood-level SES indicators and covariates.
All variance estimates shown were statistically significant with the exception of the neighborhood effect in cross-classified Models 3 and 4.

E.C. Dunn et al. / Health & Place 31 (2015) 224–232 231



Greater use of CCMM in epidemiology is highly plausible, given
the fact that many epidemiological studies collect data in a way
that support investigation of cross classification.

Second, our results suggest that given the observed differences in
results between the multilevel models and CCMM, scrutiny may be
needed to evaluate the strength of prior epidemiological studies on
the social determinants of health focusing solely on one context. In
the AddHealth sample alone, the majority of studies have examined
the role of neighborhoods on adolescent smoking, with much fewer
focusing on schools. No studies that we are aware of have used
CCMM applied to smoking in AddHealth. How should we interpret
this extant research in light of our findings? Although much more
research is needed, results of the current study reveal that it is
possible that the fixed and random effects identified in previous
studies are misleading. We think this is a possibility as even our null
CCMM, which did not include any predictors at all, found that the
variance attributed to smoking for neighborhoods and schools
differed from the conclusions that would have been reached using
a traditional MLM, where only one random effect was modeled.

The reasons why CCMM has not been widely are unclear.
However, what is known is that few studies have tried to explicitly
disentangle the role of one context from another, including
neighborhoods and schools (Leventhal and Brooks-Gunn, 2000).
Considerably more work in this area is needed, particularly to help
guide the investment of limited public health resources. Without
having clear data showing that one context is more important than
another (or that both are equally important), the field runs the risk
of implementing misguided policies and interventions to contexts
that may not be capable of having large effects on reducing
population health risk and promoting population health outcomes.

In summary, this paper provides a framework that we hope will
spark more critical evaluations of multilevel analyses that do not
account for other potentially relevant contexts. The CCMM meth-
ods described here can be extended to many other health out-
comes, and at other stages in the lifecourse, to evaluate the role of
social contexts on health and ultimately lead to the development
of interventions to improve population-level health.
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Web Table 1.  Nested Models Describing Association Between Predictors and Binary Smoking Outcome (0=not smoked in past 30 days; 1=smoked in 
past 30 days) in the National Longitudinal Study of Adolescent Health (N=16,070) 
 Model 1 Model 2 
 
Fixed Effect Estimates 

School Only Neighborhood 
Only 

Cross-Classified School Only Neighborhood 
Only 

Cross-Classified 

Intercept (SE) -1.22 (0.06) -1.20 (0.03) -1.23 (0.06) 0.03 (0.01) 0.02 (0.005) 0.03 (0.01) 
Individual-level       
Age    1.19 (1.16, 1.22) 1.21 (1.18, 1.24) 1.19 (1.17, 1.23) 
Female    1.01 (0.94, 1.09) 1.00 (0.92, 1.07) 1.01 (0.94, 1.09) 
Public Assistance    1.40 (1.22, 1.58) 1.43 (1.25, 1.63) 1.41 (1.23, 1.60) 
High School degree    1.00 (0.90, 1.12) 1.01 (0.90, 1.15) 1.01 (0.89, 1.13) 
Race       
     White    Ref Ref Ref 
     Black    0.30 (0.26, 0.34) 0.28 (0.24, 0.31) 0.30 (0.26, 0.34) 
     Hispanic    0.68 (0.59, 0.78) 0.54 (0.48, 0.60) 0.68 (0.60, 0.78) 
School-level       
Public Assistance       
High School Degree       
Percent White       
Neighborhood-level        
Public Assistance       
High School Degree       
Percent White       
Random Effect Estimates       
U3 neighborhood (SE)  0.31 (0.24, 0.38)* 0.05 (0.03, 0.09)*  0.10 (0.06, 0.15)* 0.01 (0.00, 0.02) 
U2 school (SE) 0.36 (0.26, 0.48)*  0.36 (0.25, 0.49)* 0.14 (0.09, 0.20)*  0.13 (0.08, 0.20)* 
Fit Statistics       
DIC   17522   17129 
Model 1 presents the results for a null model (i.e., no covariates) for each model type: school-only multilevel model, neighborhood-only multilevel 
model, and the cross-classified multilevel model.  Model 2 presents the same models as Model 1, except Model 2 includes individual-level predictors 
and covariates.  For the fixed effect estimates, cell entries are odds ratio (OR) estimates and credible intervals.  The intercept is presented as parameter 
estimate and standard error (SE).  Random effects are presented as estimate and credible intervals.  DIC refers to Deviance Information Criterion, a 
measure of model fit and complexity, and is only reported for the CCMM.  Significant random effects are indicated by * (p<0.05). 



 
Web Table 2.  Nested Models Describing Association Between Covariates and Binary Smoking Outcome (0=not smoked in past 30 
days; 1=smoked in past 30 days) in the National Longitudinal Study of Adolescent Health (N=16,070) 
 Model 3 Model 4 Model 5 
Fixed Effect Estimates School Only Cross-Classified Neighborhood 

Only 
Cross-Classified Cross-Classified 

Intercept (SE) 0.02 (0.003) 0.02 (0.003) 0.02 (0.004) 0.03 (0.01) 0.02 (0.004) 
Individual-level       
Age 1.19 (1.16, 1.21) 1.19 (1.17, 1.21) 1.22 (1.20, 1.24) 1.18 (1.16, 1.20) 1.20 (1.17, 1.23) 
Female 1.01 (0.94, 1.09) 1.01 (0.93, 1.09) 1.00 (0.93, 1.07) 1.01 (0.94, 1.09) 1.01 (0.94, 1.09) 
Public Assistance 1.37 (1.20, 1.58) 1.37 (1.20, 1.56) 1.43 (1.25, 1.63) 1.39 (1.21, 1.60) 1.36 (1.18, 1.56) 
High School degree 0.98 (0.87, 1.09) 0.99 (0.86, 1.12) 0.99 (0.87, 1.14) 1.00 (0.88, 1.16) 1.00 (0.88, 1.13) 
Race      
     White Ref Ref Ref Ref Ref 
     Black 0.31 (0.27, 0.36) 0.32 (0.28, 0.36) 0.3 (0.25, 0.34) 0.3 (0.26, 0.36) 0.31 (0.26, 0.35) 
     Hispanic 0.72 (0.62, 0.81) 0.73 (0.64, 0.83) 0.55 (0.48, 0.63) 0.68 (0.59, 0.78) 0.71 (0.61, 0.81) 
School-level       
Public Assistance 1.02 (1.01, 1.03) 1.02 (1.01, 1.03)   1.02 (1.01, 1.04) 
High School Degree 0.99 (0.98, 1.00) 0.99 (0.98, 1.00)   0.99 (0.98, 1.00) 
Percent White 1.01 (1.00, 1.01) 1.01 (1.00, 1.01)   1.01 (1.00, 1.01) 
Neighborhood-level       
Public Assistance   1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 0.99 (0.98, 1.00) 
High School Degree   1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 
Percent White   1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 
Random Effect Estimates      
U3 neighborhood (SE)  0.02 (0.00, 0.04) 0.10 (0.06, 0.14)* 0.01 (0.00, 0.01) 0.02 (0.01, 0.04)* 
U2 school (SE) 0.10 (0.06, 0.16)* 0.10 (0.06, 0.16)*  0.14 (0.09, 0.20)* 0.10 (0.06, 0.15)* 
Fit Statistics      
DIC  17131  17129 17133 
Model 3 presents the results of the school-only multilevel model and CCMM containing individual-level variables as well as the 
school-level measure of SES and race/ethnicity.  Model 4 presents the results of the neighborhood-only multilevel model and CCMM 
containing individual-level variables combined with the neighborhood-level measure of SES and race/ethnicity.  Model 5 presents the 
results of a CCMM containing all individual-, school-, and neighborhood-level variables.  For the fixed effect estimates, cell entries 



are odds ratio (OR) estimates and credible intervals.  The intercept is presented as parameter estimate and standard error (SE).  
Random effects are presented as estimate and credible intervals.  DIC refers to Deviance Information Criterion, a measure of model fit 
and complexity, and is only reported for the CCMM.  Significant random effects are indicated by * (p<0.05). 



Web Table 3.  Nested Cross-Classified Multilevel Models (CCMM) Describing Association 
Between Predictors and Number of Days Smoked in the Past 30 Days and Binary Smoking 
Outcome in the National Longitudinal Study of Adolescent Health (N=16,070) adjusting for 
neighborhoods with one respondent (n=970) 
 Number of Days 

Smoked in Past 30 Days 
Binary Smoking 

Fixed Effect Estimates   
Intercept (SE) -8.40 (1.05) 0.02 (0.01) 
Individual-level    
Age 0.81 (0.71, 0.90) 1.18 (1.15, 1.21) 
Female 0.06 (-0.21, 0.35) 1.01 (0.94, 1.08) 
Public Assistance 0.68 (0.18, 1.17) 1.36 (1.19, 1.56) 
High School degree (parent) -0.22 (-0.69, 0.25) 0.98 (0.86, 1.12) 
Race   
     White Ref  
     Black -4.13 (-4.63, -3.59) 0.30 (0.26, 0.35) 
     Hispanic -1.84 (-2.36, -1.32) 0.70 (0.61, 0.81) 
Neighborhood has one respondent 0.44 (-0.17, 1.05) 1.06 (0.89, 1.24) 
School-level    
Public Assistance 0.07 (0.02, 0.12) 1.02 (1.01, 1.03) 
High School Degree -0.04 (-0.09, 0.003) 0.99 (0.98, 1.00) 
Percent White 0.02 (0.001, 0.03) 1.01 (1.00, 1.01) 
Neighborhood-level    
Public Assistance -0.005 (-0.04, 0.03) 0.99 (0.98, 1.01) 
High School Degree 0.01 (-0.01, 0.03) 1.005 (1.00, 1.01) 
Percent White 0.0002 (-0.01, 0.01) 0.998 (0.995, 1.00) 
Random Effect Estimates   
U3 neighborhood (SE) 0.21 (0.05, 0.50)* 0.01 (0.003, 0.02) 
U2 school (SE) 1.79 (1.17, 2.60)* 0.10 (0.06, 0.16)* 
U1 individual (SE) 80.6 (78.8, 82.4)* - 

For the fixed effect estimates, cell entries are parameter (beta) estimates and credible 
intervals for continuous days smoked outcome and parameter (OR) estimates and credible 
intervals for binary smoking outcome.  The intercept is presented as parameter estimate and 
standard error (SE).  Random effects are presented as estimate and credible intervals. 
Significant random effects are indicated by * (p<0.05). 

 
 



Page 1 of 35	
  

Technical Appendix Part 1:   
Running Cross-Classified Multilevel Models in MLWiN 

 
**If you used this appendix for your analysis, please cite us: 
 
Dunn, E.C., Richmond, T.K., Milliren, C.E., & Subramanian, S.V.  Using Cross-Classified Multilevel 
Models to Disentangle School and Neighborhood Effects: An Example Focusing on Smoking Behaviors 
among Adolescents in the United States. Health and Place 

 
 
Introduction 
  
This first technical appendix is intended to show MLwiN users how to fit cross-classified multilevel 
models in MLwiN.  A second technical appendix shows users how MLwiN can be executed through 
STATA.   
 
Here, we provide detailed instruction on how to fit a cross-classified model with a continuous outcome 
followed by a brief overview of how to fit a cross-classified model with a binary outcome.  Although the 
same general set of steps are taken for either model, we think it is easier to understand the procedures to 
fit a linear model and thus recommend readers start analyzing cross-classified models with continuous 
outcomes. 
 
Our illustration uses data previously constructed, cleaned, and analyzed in the paper by Dunn and 
colleagues noted above.  We used MLwiN version 2.26  for all analyses (Rasbash et al. 2012, Center for 
Multilevel Modelling). 
 
In our analysis, all data manipulation (e.g., creating derived variables, recoding variables, etc.) was 
performed prior to importing the data into MLwiN.  For ease of implementation, we recommend all data 
manipulation (e.g., creating derived variables, recoding variables, etc ) occur in other programs (e.g., 
SAS, STATA) outside of MLwiN.  Readers interested in specific data manipulation capabilities should 
refer to the MLwiN manual (Rasbash et al. 2012).    
 
We would also like to note that MLwiN requires a constant variable consisting of a vector of 1’s for all 
observations.  The constant variable is necessary for modeling the intercept and thus is required to fit a 
model with random intercepts.  We recommend you create this constant variable before importing the 
data into the program. 
 
 
Getting Started in MLwiN 
 
Before opening a dataset, the worksheet size should be adjusted to accommodate the size of data (i.e., 
number of observations) by clicking on Worksheet under the Options menu.If the number of cells listed 
in the worksheet is less than the actual number of observations in the data, some observations may be lost 
in the imported dataset. 
 

dunn
Text Box
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On the Worksheet tab, adjust the number of cells in the worksheet (i.e., number of observations), 
maximum number of levels (e.g. 2 for individual and school), number of columns (i.e., variables), number 
of explanatory variables allowed in a single model, and number of groups (i.e., number of categories 
within the categorical variables) to fit the dataset.  The number of cells must be at least equal to the 
number of observations in the dataset.  Adding more cells, levels, or other features to the worksheet, that 
exceed the actual number in the dataset, will not affect model specification or results in any way.  Thus, it 
is reasonable to always choose numbers larger than what you think you will need.  After all adjustments 
are made, click the “Done” button for the changes to take effect. 
 

 
 
In order to open your dataset, go to the File menu and select Open worksheet. 
 

 
 
 



Page 3 of 35	
  

You  can open previously saved MLwiN worksheets (.wsz or .ws) as well as datasets from other programs 
(Stata, SAS, SPSS) by selecting the file type from the drop-down menu 
 

 
 
Once a dataset has been opened, the variable names and attributes are displayed in the Names window.  A 
‘categorical’ column indicates whether MLwiN recognizes the variable as categorical (indicated by True 
in the Categorical column) or continuous (indicated by False in the Categorical column) based on the 
values.  This attribute may be changed using the “Toggle Categorical” button.  Miscategorization of 
variables will result in continuous variables being treated as categorical and vice versa. 
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To implement multilevel models, the data must be sorted in ascending order by the identifier variable 
within each level.  Thus, the level 1 identifier (e.g., individual subject identification number) must be 
sorted within level 2 (e.g., school identification number), level 2 within level 3, etc..  The Sort function 
can be accessed from the Data Manipulation menu.   
 

 
 
To sort the data, first select the number of levels to sort on (MlwIN refers to this as the number of ‘keys’ 
to sort on) and choose the level identifiers from the drop-down menu (under ‘key code columns’).  The 
highest level in the hierarchy (e.g. school) should be the first variable and lowest level should be last (e.g. 
individual).  The level identifier variables to be sorted on should be selected next under the Input 
Columns.  Variables can be chosen individually, or click the “Select All” button to sort all variables.   
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To save these sort changes, the data must be “output.”  To output all of the sorted variables without 
creating copies of the variables (recommended), click the “Same as input” button under Output columns. 
The sorted variables can also be output to empty columns by clicking “Free columns” instead. 
 

 
 

Clicking the “Add to Action List” button will create a queue for the variables to be sorted.   
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To perform the sort, click the “Execute” button.  Once the sort is complete, an asterisk will appear next to 
all the variable names that have been sorted. 
 

 
 
 
Specifying the Model: Example with a Continuous Outcome 
 
Note: When fitting any cross-classified multilevel model in MLwiN, the model must first be specified 
assuming a nested hierarchical structure (i.e., individuals clustered in schools and schools clustered in 
neighborhoods).  This initial model provides starting values.  The model must then be refit with the cross-
classified structure, using the parameters obtained from the first (“nested structure”) model as starting 
values.  MLwiN uses the Iterative Generalized Least Squares method to implement hierarchically nested 
models while cross-classified models must be implemented using Markov Chain Monte Carlo (MCMC) 
methods.  MCMC is a simulation-based method estimating the parameters by re-sampling the data to 
produce more accurate estimates of the unknown parameters.  IGLS and traditional least-squares 
regression methods give point estimates for unknown parameters calculated from the sample data; 
however there is no re-sampling performed.  MCMC allows for more complex models to be fitted, 
including cross-classified models.  For more information on MCMC, see Chapter 1 of the MCMC manual 
(Browne, 2012). 
 
To specify the first model, choose Equations from the Model menu. 
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This will bring up the Equations window, where the first model can be specified.  Here, you will specify 
the dependent and independent variables, distribution function of the dependent variable, and the number 
of levels to model.  Red text in the Equations window indicates elements of the model that have not yet 
been specified.  The nested structure model is run using Iterative Generalized Least Squares regression 
which is indicated by the IGLS under the toolbar.  This regression estimation method is the default when 
MLwiN is opened. 
 

 
 

To specify the model, click on the red “y” on the left side of the equation to specify the dependent 
variable as well as the number of levels.  Choose the outcome variable from the drop-down list.  Then 
choose the appropriate number of levels to include in the model. 
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Once the number of levels has been specified, drop-down menus will appear for each level.  The level 
identifiers are specified here.  Level 3 is the highest level unit (in our example it is the neighborhood, 
coded as: w1nhood1), while level 1 is the lowest level (it is the individual, coded as: aid in our example). 
 

 
 

 
Here the variable smoking has been specified as the dependent variable, being modeled at 3 levels 
neighborhood:  winhood1, school:  scid, and individual:  aid.  Click done when the dependent variables 
and levels have been specified.  Clicking the “Notation” button, we can change the way subscripts are 
displayed for the levels. 
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It is particularly useful when implementing the cross-classified model to display a single letter subscripts 
for all levels.  This is because the levels are no longer nested which is not properly accounted for by the 
traditional hierarchical notation (ith student in jth school in kth neighborhood).  There are more complex 
relationships between school and neighborhood in a cross-classified model (i.e. there can be both crossed 
and nested relationships between the two levels) which cannot easily be indicated in the traditional 
notation.  For this reason, we use a classification notation with a single subscript to indicate that the levels 
are not entirely nested.   To display letter subscripts for all levels, uncheck the box for “subscripts as 
names.”  To display a single “i” for all three levels, unclick ‘multiple subscripts,’ to further simplify the 
display of the model.   
  

 
 
Now the single subscript is displayed instead of the level identifiers.   
 
The default distribution function for the dependent variable is a normal distribution, which is indicated by 
the N on the right side of the top equation.  This indicates a normal distribution (N=normal) for the fixed 
estimate, Xβ and a random part indicated by Ω.   The distribution of the dependent variable can be 
changed by double-clicking the N. 
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In our example, the outcome variable smoking is continuous and for illustrative purposes will be treated 
as though it is normally distributed.  Therefore the model will be specified using the normal distribution.  
Binomial, Poisson, negative binomial, and multinomial distributions are other options depending on the 
distribution of the outcome.  Once the distribution has been selected, click the “Done” button to continue 
specifiying the model. 
 

 
 

To add a random intercept to the model, double click on the red β0x0. 
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Choose the constant variable (i.e. the vector of 1’s) from the drop-down menu (we called this variable 
cons).  As noted previously, the constant variable is necessary for fitting the intercept(s).  For a random-
intercepts model, which allows for random intercepts at all levels, check the boxes for each level as well 
as the Fixed Parameter.  Click done when you are finished. 
 

 
 

Now that the null random-intercepts model has been fully specified, the equations are black indicating 
that specification is complete.  The number of cases in use is also populated.  Compare the number of 
cases here to the sample size in your dataset to ensure there are no missing values and all cases are used.  
The model can be now be run using IGLS by clicking the “Start” button.  To view the estimates, click the 
“Estimates” button twice.  Doing so will allow you to view the full algebraic specification of the model. 
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After clicking the “Estimates” button once, the specification of the fixed and random parts of the model 
can be viewed.   
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Note the subscripts are uniformly i above, as we had indicated earlier. 
 
Clicking the “Estimates” button again, we can see the converged estimates, specifically the parameter 
estimate, (standard error), the variance components for each level in brackets, along with the standard 
error in parentheses.  Note: The model is currently assuming a hierarchical structure not cross-classified.  
The estimates should not be interpreted.  It is necessary to obtain these estimates as starting values for the 
cross-classified structure. 
 

 
 
 
To check the hierarchical structure, or the nesting structure of the levels, go to the Hierarchy Viewer on 
the Model menu. 
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Here we see the nested structure of 16,553 students (aid) in 2,647 schools (scid) in 2,142 neighborhoods 
(w1nhood).  As defined in the non-cross classified hierarhical model, the nesting structure is treating 
different combinations of school and neighborhood as though they are unique schools (e.g, if a single 
school has individuals from 2 different neighborhoods, this hierarchical nested model would count 
schools as 2 separate schools).  This is not what you want for a cross-classified model. 
 

 
 
To treat the levels as cross-classified instead of nested, the model needs to be re-run using MCMC 
reestimation which can be selected from the Estimation menu. 
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The resampling strategy (e.g. burn in length and number of iterations of the respamples MCMC is taking) 
can be changed in the Estimation control menu in the MCMC tab.  After making any changes, click the 
“Done” button. 
 

 
 
In order to treat neighborhood and school levels as cross-classified instead of hierarchically nested, we 
need to change the structure in Classifications Information which can be accessed by choosing 
Classifications from the Model menu. 
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Check the box “Treat levels as cross-classified” in the Classification Information window to run the 
model with a cross-classified structure. 
 

 
 

Looking at the Hierarchy Viewer again, we see there are now 16,553 students nested in 132 schools from 
2,142 neighborhoods.  The number of schools is reduced by treating schools and neighborhoods as cross-
classified levels. 
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Now the model can be run with a cross-classified structure using MCMC re-estimation by clicking the 
“Start” button again.  The MCMC re-estimation may take a few minutes depending on the sample size 
and extent of cross-classification in your data.  The estimates are changed from the ones we computed 
using IGLS.  In particular, you could notice a change in the variance components.  With the model 
correctly specified and the cross-classification of the levels accounted for, these estimates are fully 
interpretable.   However, the Deviance statistic reported is not interpretable for these models and should 
be ignored.  This is because the Deviance statistic does not utilize the information from the MCMC re-
sampling. The Deviance Information Criterion or DIC is a better diagnostic of model fit in cross-
classified models which is discussed on the next page.  
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The Deviance Information Criterion (DIC) can be used to assess model fit in cross-classified models; the 
Deviance, reported in the Equations window, should be ignored when examining the cross-classified 
model.  To obtain this statistic, choose “DIC Diagnostic” from the MCMC drop-down menu in the Model 
menu. 
 

 
 
Here the DIC is 120419.9.  We use this DIC to compare the fit across cross-classified models.  A lower 
value of the DIC indicates better model fit.  We will come back to this value later to compare the null 
random-intercepts cross-classified model to a random-intercepts model with more predictors. 
 

 
To add more predictors to the model, we need to switch the estimation back to IGLS from MCMC by 
selecting IGLS from the Estimation menu. 
 

 
 

Click the “Done” button on the Estimation control window to use the default options in IGLS. 
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Now more predictors can be added to the model by clicking the “Add Term” button on the bottom 
toolbar.  
 

 
 
Choose the variable name from the ‘variable’ drop-down menu in the Specify term window to indicate the 
term you want to add to the model.  Depending on whether the variable is continuous or categorical, 
options to center the variable or choose the reference category will appear.  With a continuous variable, 
choose whether values should be uncentered or centered, and if so, around what value.  Click the “Done” 
button when finished choosing options for the variable.  Here uncentered age is added to the model.  
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The reference category can be specified for categorical variables.  Here the variable for sex called female 
is added to the model with males as the reference category.  
 

 
 
Once all variables have been added to the model, each variable can be modeled as a fixed effect or 
random effect, which would allow the slopes to vary at different levels.  The default is to treat all 
predictors as fixed parameters.  By double-clicking on the variable name, a random slope can be fitted for 
the variable(s).  If two variables with the same formatting/labeling  (e.g. “Yes”/”No”) are added to a 
model, an error message stating “Category name clash, using extended names” will appear.  This can be 
fixed by using a more descriptive name for one of the categories.   
 
By clicking “Ok,” the variable will be added to the model.  The full name of the variable will appear.  For 
categorical variables, the full variable name of the variable will appear, followed by a colon and the non-
referent category.  In this example the variables publicassist and highschool were both coded “Yes” and 
“No” with “No” as the reference category. 
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To fit a random slope for a specific level, check the box next to that level identifier.  In these models, we 
are only modeling a random intercept, not random slopes. 
 

 
 

Once you are finished adding variables to the model, fit the model in IGLS to get the estimates assuming 
a nested structure.  
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Run the model again using MCMC re-estimation to fit the model with a cross-classified structure with the 
starting values obtained from IGLS which assume a nested structure.  As noted previously, ignore the 
Deviance statistic and instead use the DIC, which can be accessed from the Model menu, under MCMC,  
and “DIC”). 
 

 
 

The DIC for the full model with all predictors is less than the null model.  This indicates that the full 
model is a better fitting model. 
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To check the assumptions of the linear model, we can look at the residuals which can be accessed from 
the Model menu under Residuals. 
 

	
  

 
This will open the Residuals window.  Residuals can be calculated and plotted for each level to look for 
issues with overall model fit as well as outliers and influential observations.  The level on which to 
calculate residuals must be chosen first from the drop-down menu on the Settings tab. 
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Here the residuals at the school-level are calculated by choosing the school identifier and clicking the 
“Calc” button. 
 

	
  

Once the residuals have been calculated at the desired level, different plots may be selected from the Plots 
tab.  Here we will plot the school residuals by their rank on the x-axis.  This will produce a plot with the 
smallest residuals on the left up to the largest residuals on the right.  Once the desired plot is selected, 
click “Apply.” 
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The following residual plot is produced for the school level  Each triangle represents a different school.  
The residual plot indicates good model fit if there is an overall linear trend with residuals close to zero 
(indicating perfect correlation between model-predicted outcome and observed outcome for a given 
school).  A slight s-shaped curve toward the minimum and maxium is common as there is usually sparse 
data.  Observations with large residuals may be concerning.  Here we may be concerned about the two 
outlying schools with large positive residuals indicating that the observed average smoking days for these 
schools were greater than what was predicted by the model.  By double-clicking on one of these extreme 
observations, we can determine which school it represents and highlight it in the graph or remove it from 
the model altogether. 
 

	
  

Here we see that the largest positive residual comes from school 31 (SCID=31) which is the 32nd school 
in the model (j=32 because SCID starts at 0).  By making changes to the “In graphs” inset, we can leave 
this school in the residual plot, leave it out entirely, or highlight it using a different color if desired.  
Additionally, we could choose to leave this outlying school out of the model or model this school as a 
dummy variable to try to capture the excess variability contributed by this school.  For more information 
on model diagnostics and residuals in MLwiN, see Chapter 15 of the manual for general information on 
diagnostics (Rasbash, et al. 2012), and Chapter 15 of the MCMC manual for information specific to 
cross-classified models (Browne, 2012). 
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Specifying the Model: Example with a Binary Outcome  
 
Fitting a model with a binary outcome is very similar to fitting a model with a continuous outcome in 
MLwiN.  The major difference is that the distribution function will change.  There are a few minor 
differences between fitting the binary model that are highlighted here.  Specifying the dependent variable, 
running the model, and adding predictors are practically identical to fitting a model with a continuous 
outcome.  As before, the data must be sorted by level using the Sort function (Click Remove All before 
starting the Sort) and any categorical variables should be classified as such using the “Toggle 
Categorical” button in the Names window.  Additionally, a constant variable (vector of 1’s for all 
observations) is also necessary when fitting a binary model and random intercepts.  Note: This appendix 
provides instructions for modeling binary data.  For modeling proportions at a higher level, see the 
MLwiN User Manual. 
 
The model with a binary outcome can again be specified from the Equations window (if there is an 
existing equation you can click on terms; a menu will then appear, allowing you to ‘delete term’.  The 
variable smoking2 (0=non-smoker, 1=smoker) is specified  as the dependent variable for the binary 
model.  The number of levels is chosen and the level identifiers are selected from the drop-down menus. 
 

	
  
	
  

The dependent variable distribution can be changed from the Response Type window by double-clicking 
the N in the Equations window.  For the binary model, the distribution function is binomial with a logit 
link function. 
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Now instead of the N for normal distribution, we see the dependent variable is modeled using a binomial 
distribution.  This indicates that the binary smoking variable follows a binomial distribution with 
parameters n and π at each of the three levels.  The red n indicates the denominator, which is a 1 for all 
observations in the case of binary data (all individuals can take on only one of two values).  If the data 
had been binomial (proportions) the denominator would instead be the total number on which the 
proportion is based (e.g. modeling proportion of smokers at the school level the denominator would be 
the total number of students in each school).   Double-clicking the red n makes the the Specify 
Denominator window appear. 
 

	
  
	
  

Since we already have a variable which is a 1 for each observation (cons), we can specify this variable as 
the denominator as well. 
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Clicking the “Nonlinear” button on the bottom toolbar opens the Nonlinear Estimation window where 
the default options for assumptions (e.g., binomial, extra binomial), linearization (e.g., first order, second 
order), and estimation (e.g., MQL, PQL) can be changed. 
	
  

	
  
 
The default distributional assumption is binomial with a 1st order linearization and Marginal Quasi-
Likelihood (MQL) estimation.  The default settings are sufficient for this model.  Once any necessary 
changes are made, click the “Done” button.  In this model, we are using the default nonlinear estimation 
methods.  For more information on the other methods, see the MLwiN MCMC manual, Chapter 10 
(Browne, 2012). 
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To add a random intercept to the model, double click on the red β0x0. 
 

	
  
	
  

The constant variable is chosen from the drop-down menu as both a fixed effect and a random effect at all 
three levels.  This allows the model to be fit with a random intercept at each level. 
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Click the ‘Start” button to fit the model in IGLS.  Note: Just like with the models estimating a continuous 
outcome, fitting the model in IGLS assumes a nested structure.  These parameter estimates are not 
interpretable.  We will need to refit the model using MCMC re-estimation to fit a cross-classified model. 
 

	
  
	
  

To switch to MCMC estimation, choose MCMC from the Estimation menu.  Make any changes to the 
burn in length and iteration control in the Estimation Control window and click “Done.” 
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Change the model structure to treat the levels as cross-classified by accessing the Classifications 
Information by choosing Classifications from the Model menu.  Check the box “Treat levels as cross-
classified” in the Classification Information window to run the model with a cross-classified structure. 
 

 
	
  

The model can be re-run with the cross-classified structure in MCMC by clicking the “Start” button.  In a 
model with a binary outcome, individual-level variance is no longer computed.  The estimates given are 
the parameter estimate (standard error) and variance estimate (standard error) in brackets.  The estimates 
are now interpretable because the levels have been treated as cross-classified.  Odds ratios can be 
computed by exponentiating the parameter estimates.  The Deviance statistic is an inadequate measure of 
model fit for cross-classified models and should be ignored. 
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We can request the DIC again from the MCMC drop-down menu in the Model menu.  The DIC for the 
null random-intercepts binary model is 18111.5. 
 

	
  
	
  

To add more predictors to the model, we again return to IGLS by selecting IGLS from the Estimation 
menu.  This will make the Estimation Control window appear.  You can then make changes to the 
estimation.  To keep defaults, click the “Done” button. 
	
  

	
  
	
  

Click the “Add Term” button in the bottom toolbar to specify variables to add to the model. 
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Choose the variable to add from the drop-down menu and if continuous, whether to center and around 
which value. 

	
  
	
  

If the predictor being added to the model is categorical, choose the reference category. 
 

	
  
	
  
Fit the predictors as either fixed effects or random effects by double-clicking on each variable name and 
choosing the levels at which to model random slopes.  The default is to treat all variables as fixed effects.  
Once any desired changes have been made, run the model by clicking “Start.” 
 

	
  
	
  



Page 34 of 35	
  

To run the full model treating the levels as cross-classified, choose MCMC from the Estimation menu.  
Make any changes to the burn in length and iteration control in the Estimation Control window and click  
“Done.” Then click the “Start” button on the Equations window to re-estimate the model.   
	
  

	
  
	
  

The DIC for the full binary model is lower than the null model indicating that the full model is a better fit. 
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Technical Appendix Part 2: 
Running Cross-Classified Multilevel Models in MLwiN through STATA using the runmlwin 

package 
 
**If you used this appendix for your analysis, please cite us: 
 
Dunn, E.C., Richmond, T.K., Milliren, C.E., & Subramanian, S.V.  Using Cross-Classified Multilevel 
Models to Disentangle School and Neighborhood Effects: An Example Focusing on Smoking Behaviors 
among Adolescents in the United States.  Health and Place. 
 
 
Introduction 
 
This second technical appendix is intended to show users how to fit cross-classified multilevel models in 
MLwiN via STATA.  With both STATA and MLwiN installed, MLwiN can be executed through 
STATA, which is convenient for data management as well as looking at and interpreting output.  The 
following tutorial uses MLwiN version 2.29 and STATA version 13.1 (College Station, TX).  Additional 
details are also available here: 
 

Leckie, G, C Charlton. Runmlwin: A program to run the MLwiN multilevel modeling software f
 rom within Stata. 2012. Journal of Statistical Software 52(11): 1-40. 
 
 
The runmlwin package must first be installed from the Statistical Software Components (SSC) archive, 
which is a repository of user contributed STATA commands.  The following accesses the SSC and 
installs the runmlwin command. 
 
ssc install runmlwin 
 
The filepath where MLwiN is located must be specified so that STATA can find the program to execute 
any runmlwin commands.  The following command specifies the filepath where MLwiN is located on the 
user’s computer (users should substitute their own filepath). 
 
global MLwiN_path "C:\Program Files\MLwiN v2.29\i386\mlwin.exe" 
 
Linear Models 
The following command fits a two-level hierarchical (i.e., multilevel) linear null model with random 
intercepts for school and individual predicting the number of days smoked in the past 30.  The data must 
first be sorted by the level identifiers just as it would be sorted within MLwiN.  Additionally, a constant 
variable (here called cons) with a value of 1 for every observation must first be constructed in order to fit 
the intercept.  The level 2 school identifier is scid and level 1 individual identifier is aid. 
 
sort scid aid 
runmlwin smoking cons, level2(scid:cons) level1(aid:cons) nopause 
 
The following output generated by the above command appears in the STATA results window after 
MLwiN opens, runs, and closes. 
 

dunn
Text Box
Health and Place Volume 31, January 2015, Pages 224–232



Page 2 of 7	
  

 
 
The output gives information about the number of level 2 groups, model run time, iterations, and fit 
statistics as well as the parameter estimate, test statistic and 95% confidence interval for the fixed effects 
(in this case just the intercept).  Additionally, the random effect parameter estimates for school and 
individual variance in the intercept appear in the last output table. 
 
To fit a cross-classified 3-level null model predicting number of smoking days with random intercepts for 
neighborhood, school, and individual the model must first be fit using the iterative generalized least 
squares (IGLS) algorithm with a hierarchical structure and re-run in the Bayesian Markov Chain Monte 
Carlo (MCMC) framework in order to properly account for the cross-classified data structure.  The 
parameter estimates from the naïve IGLS model are used as starting values or priors for the MCMC cross-
classified model.  Again, the data should first be sorted by the level identifiers.  The level 3 neighborhood 
identifier is w1nhood1, level 2 school identifier is scid, and level 1 individual identifier is aid.   
 
The first model is quietly run (quietly runmlwin) and fits the data using a hierarchical structure.  The 
second model is fit using the cross-classified structure in a Bayesian framework using MCMC.  The 
option mcmc(cc) indicates that the data are cross-classified (cc) and the model should be fit using MCMC 
while the option initsprevious indicates that the parameter estimates from the first model (assuming 
hierarchical structure) should be used as starting values for the second model.  The output from the first 
model will not appear in the output window if the quietly option is used. 
 
sort w1nhood1 scid aid 
quietly runmlwin smoking cons, level3(w1nhood1:cons) level2(scid:cons) 
level1(aid:cons) nopause  
 
runmlwin smoking cons, level3(w1nhood1:cons) level2(scid:cons) 
level1(aid:cons) mcmc(cc) initsprevious nopause 
 

                                                                              

                   v a r ( c o n s )      8 3 . 0 8 0 6 2    . 9 3 0 5 6 1 1       8 1 . 2 5 6 7 5     8 4 . 9 0 4 4 9

L e v e l  1 :  a i d                   

                                                                              

                   v a r ( c o n s )      5 . 3 3 0 0 7 4    . 7 7 2 6 0 0 1       3 . 8 1 5 8 0 6     6 . 8 4 4 3 4 3

L e v e l  2 :  s c i d                  

                                                                              

   R a n d o m - e f f e c t s  P a r a m e t e r s      E s t i m a t e    S t d .  E r r .      [ 9 5 %  C o n f .  I n t e r v a l ]

                                                                              

                                                                              

        c o n s      3 . 8 2 5 4 6 3     . 2 2 0 5 5 9     1 7 . 3 4    0 . 0 0 0      3 . 3 9 3 1 7 5     4 . 2 5 7 7 5 1

                                                                              

     s m o k i n g         C o e f .    S t d .  E r r .       z     P > | z |      [ 9 5 %  C o n f .  I n t e r v a l ]

                                                                              

D e v i a n c e              =   1 1 6 8 9 3 . 2 9

L o g  l i k e l i h o o d        =  - 5 8 4 4 6 . 6 4 5

N u m b e r  o f  i t e r a t i o n s  =           3

R u n  t i m e  ( s e c o n d s )    =        5 . 9 4

                                                           

           s c i d         1 2 8          1 8       1 2 5 . 5        1 0 1 2

                                                           

 L e v e l  V a r i a b l e      G r o u p s     M i n i m u m     A v e r a g e     M a x i m u m

                    N o .  o f        O b s e r v a t i o n s  p e r  G r o u p

                                                           

E s t i m a t i o n  a l g o r i t h m :  I G L S

N o r m a l  r e s p o n s e  m o d e l

M L w i N  2 . 2 9  m u l t i l e v e l  m o d e l                      N u m b e r  o f  o b s       =      1 6 0 7 0



Page 3 of 7	
  

After submitting the above command, the cross-classified results on the following page appear in the 
STATA results window. 
 
The MCMC cross-classified model output gives information on the number of observations nested within 
each level, how long the model was run and for how many iterations (burnin, chain, thinning, etc.) and 
model fit statistics (deviance, DIC) in addition to the parameter estimates for the fixed and random effects 
at each level along with 95% credible intervals (Bayesian confidence interval). 
 

 
 
Additional fixed effects can be added to the model by including them after the outcome variable 
specification.  The following example adds additional predictors at the individual, school, and 
neighborhood levels first fitting a naïve hierarchical model in IGLS and then using the parameter 
estimates as starting values for the cross-classified MCMC model. 
 
sort w1nhood1 scid aid 
quietly runmlwin smoking age female publicassist highschool black 
hispanic sch_publicasst sch_hsed sch_propwhite tract_assistance 
tractprop_hs tractprop_white cons, level3(w1nhood1:cons) 
level2(scid:cons) level1(aid:cons) nopause  
 
runmlwin smoking age female publicassist highschool black hispanic 
sch_publicasst sch_hsed sch_propwhite tract_assistance tractprop_hs 

                                                                              

                   v a r ( c o n s )     8 2 . 7 2 6 9 8   . 9 3 3 6 7 1 8    3 8 9 9    8 0 . 9 3 7 9 7   8 4 . 5 8 2 3 7

L e v e l  1 :  a i d                   

                                                                              

                   v a r ( c o n s )     5 . 3 6 2 2 5 6   . 8 0 1 8 5 8 8    2 5 2 7    3 . 9 5 2 6 5 2   7 . 0 6 5 6 1 9

L e v e l  2 :  s c i d                  

                                                                              

                   v a r ( c o n s )     . 4 5 7 2 1 0 2   . 1 8 9 3 2 3 3      1 4    . 1 2 6 2 2 3 3   . 8 7 9 4 1 6 4

L e v e l  3 :  w 1 n h o o d 1              

                                                                              

   R a n d o m - e f f e c t s  P a r a m e t e r s        M e a n    S t d .  D e v .    E S S      [ 9 5 %  C r e d .  I n t ]

                                                                              

                                                                              

        c o n s      3 . 8 8 1 8 9 7    . 2 2 2 5 6 4 1       2 9 3    0 . 0 0 0      3 . 4 6 3 0 0 5     4 . 3 1 9 5 5 2

                                                                              

     s m o k i n g         M e a n     S t d .  D e v .      E S S      P        [ 9 5 %  C r e d .  I n t e r v a l ]

                                                                              

B a y e s i a n  D I C                =   1 1 6 7 3 5 . 8 9

E f f e c t i v e  n o .  o f  p a r s  ( p d )  =      1 6 9 . 8 7

D e v i a n c e  ( t h e t a b a r )         =   1 1 6 3 9 6 . 1 6

D e v i a n c e  ( d b a r )             =   1 1 6 5 6 6 . 0 2

R u n  t i m e  ( s e c o n d s )          =        2 0 . 6

T h i n n i n g                    =           1

C h a i n                       =        5 0 0 0

B u r n i n                      =         5 0 0

                                                           

           s c i d         1 2 8          1 8       1 2 5 . 5        1 0 1 2

       w 1 n h o o d 1        2 1 1 1           1         7 . 6         2 6 0

                                                           

 L e v e l  V a r i a b l e      G r o u p s     M i n i m u m     A v e r a g e     M a x i m u m

                    N o .  o f        O b s e r v a t i o n s  p e r  G r o u p

                                                           

E s t i m a t i o n  a l g o r i t h m :  M C M C

N o r m a l  r e s p o n s e  m o d e l

M L w i N  2 . 2 9  m u l t i l e v e l  m o d e l                      N u m b e r  o f  o b s       =      1 6 0 7 0
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tractprop_white cons, level3(w1nhood1:cons) level2(scid:cons) 
level1(aid:cons) mcmc(cc) initsprevious nopause 
 
Output for the cross-classified model with additional fixed effects can be found on the following page. 
 

 
  

                                                                              

                   v a r ( c o n s )     8 0 . 5 3 3 0 5   . 9 0 4 6 2 0 8    4 2 5 7    7 8 . 8 1 6 2 6   8 2 . 2 9 8 8 8

L e v e l  1 :  a i d                   

                                                                              

                   v a r ( c o n s )     1 . 7 1 9 5 8 4   . 3 4 9 1 4 6 5    1 2 2 8    1 . 1 2 3 5 4 1   2 . 4 8 5 2 4 7

L e v e l  2 :  s c i d                  

                                                                              

                   v a r ( c o n s )     . 2 5 0 7 0 9 3   . 1 3 1 0 1 4 3      1 4    . 0 5 5 6 7 6 3   . 5 2 4 4 0 8 3

L e v e l  3 :  w 1 n h o o d 1              

                                                                              

   R a n d o m - e f f e c t s  P a r a m e t e r s        M e a n    S t d .  D e v .    E S S      [ 9 5 %  C r e d .  I n t ]

                                                                              

                                                                              

        c o n s     - 8 . 4 4 5 6 7 3    1 . 0 3 6 9 8 4      1 9 0 0    0 . 0 0 0     - 1 0 . 4 3 9 9 9    - 6 . 4 4 2 7 4 6

t r a c t p r o p _ ~ e      . 0 0 0 2 7 6 8    . 0 0 5 5 3 7 5      2 5 6 4    0 . 4 8 5     - . 0 1 0 5 0 4 5      . 0 1 0 9 9 7

t r a c t p r o p _ h s      . 0 1 0 7 1 8 9    . 0 1 0 1 5 7 7      2 6 3 2    0 . 1 4 4     - . 0 0 8 9 9 6 2     . 0 3 0 7 0 4 7

t r a c t _ a s s i ~ e     - . 0 0 4 9 1 9 1    . 0 1 9 2 2 5 3      2 9 6 4    0 . 4 0 6     - . 0 4 2 5 5 6 8     . 0 3 2 5 7 8 1

s c h _ p r o p w h ~ e      . 0 1 8 4 7 1 9     . 0 0 8 4 4 7       8 8 5    0 . 0 1 4       . 0 0 1 7 0 1     . 0 3 4 9 0 1 3

    s c h _ h s e d     - . 0 4 3 1 5 0 6    . 0 2 2 2 8 7 6       8 8 8    0 . 0 2 6     - . 0 8 5 9 3 1 5     . 0 0 0 8 3 2 7

s c h _ p u b l i c ~ t      . 0 6 8 0 9 4 6    . 0 2 5 1 7 6 5       8 6 1    0 . 0 0 4      . 0 1 8 4 8 1 6     . 1 1 7 0 1 0 5

    h i s p a n i c     - 1 . 8 3 5 4 3 5    . 2 7 3 0 8 1 5      4 0 2 7    0 . 0 0 0     - 2 . 3 6 4 8 9 5    - 1 . 3 1 6 9 9 9

       b l a c k     - 4 . 1 1 2 6 0 8    . 2 5 9 1 7 5 7      4 4 0 1    0 . 0 0 0     - 4 . 6 3 0 5 3 6    - 3 . 6 1 2 9 5 9

  h i g h s c h o o l     - . 2 1 1 1 9 7 2    . 2 3 4 0 1 3 7      5 0 3 7    0 . 1 8 0     - . 6 7 9 0 2 0 6     . 2 5 0 5 7 0 4

p u b l i c a s s i s t      . 6 8 0 8 3 4 8    . 2 5 7 3 4 5 7      5 0 8 3    0 . 0 0 3      . 1 8 3 0 9 6 3      1 . 1 8 1 7 6

      f e m a l e      . 0 6 3 1 5 8 3    . 1 4 1 5 2 7 5      4 4 7 4    0 . 3 3 3     - . 2 0 9 6 0 5 8     . 3 3 8 3 5 4 8

         a g e      . 8 0 9 9 6 3 8    . 0 5 0 5 6 7 3      2 9 5 6    0 . 0 0 0      . 7 1 3 1 9 2 5     . 9 0 8 3 9 0 5

                                                                              

     s m o k i n g         M e a n     S t d .  D e v .      E S S      P        [ 9 5 %  C r e d .  I n t e r v a l ]

                                                                              

B a y e s i a n  D I C                =   1 1 6 2 6 4 . 0 2

E f f e c t i v e  n o .  o f  p a r s  ( p d )  =      1 3 3 . 0 1

D e v i a n c e  ( t h e t a b a r )         =   1 1 5 9 9 8 . 0 1

D e v i a n c e  ( d b a r )             =   1 1 6 1 3 1 . 0 2

R u n  t i m e  ( s e c o n d s )          =        3 4 . 5

T h i n n i n g                    =           1

C h a i n                       =        5 0 0 0

B u r n i n                      =         5 0 0

                                                           

           s c i d         1 2 8          1 8       1 2 5 . 5        1 0 1 2

       w 1 n h o o d 1        2 1 1 1           1         7 . 6         2 6 0

                                                           

 L e v e l  V a r i a b l e      G r o u p s     M i n i m u m     A v e r a g e     M a x i m u m

                    N o .  o f        O b s e r v a t i o n s  p e r  G r o u p

                                                           

E s t i m a t i o n  a l g o r i t h m :  M C M C

N o r m a l  r e s p o n s e  m o d e l

M L w i N  2 . 2 9  m u l t i l e v e l  m o d e l                      N u m b e r  o f  o b s       =      1 6 0 7 0
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Logistic Models 
Fitting cross-classified logistic models with a binary outcome is very similar to the linear models outlined 
above.  The distribution and link function must be specified as binomial and logit, respectively instead of 
the default normal distribution used in the linear models (NOTE: MLwiN has other distribution and link 
functions not outlined in this tutorial).  An additional constant variable for the denominator must be 
constructed.  In the following example the denominator variable is called denom and has a value of 1 for 
all observations. 
 
The following command fits a hierarchical null model with school as level 2 and individual as level 1 
predicting smoking status (smoking2 coded 0=non-smoker, 1=smoker).  A random intercept is fitted for 
school.  The discrete option specifies that the outcome variable is discrete and not continuous and that the 
distribution function is binomial (dist(binomial)) with a logit link function (link(logit)).  The denom 
option specifies the variable that should be used to calculate the denominators for the higher level units 
which is called denom. 
 
sort scid aid 
runmlwin smoking2 cons, level2(scid:cons) level1(aid:) 
discrete(dist(binomial) link(logit) denom(denom)) nopause  
 
Output from the above command is shown below.  The output gives information on the number of lower 
level units nested in the higher level units, run time and number of iterations as well as parameter 
estimates and 95% confidence intervals for the fixed and random effects.  With logistic models, there is 
no variance parameter output for the lowest level (in this case individual) because individual variance in a 
binary outcome is a function of the proportion of individuals who have the outcome.  
 

 
 
Next a 3-level cross-classified null model with random intercepts for school and neighborhood is fit.  Just 
as with the linear models, the logistic models must first be run in IGLS assuming a hierarchical structure 
and then refit in MCMC to account for the cross-classified structure using the parameter estimates from 
the first model as the starting values for the Bayesian MCMC.  Similar to the linear models, the naïve 
hierarchical model is quietly run to suppress the output followed by the cross-classified model. 
 
sort w1nhood1 scid aid 

                                                                              

                   v a r ( c o n s )      . 2 8 4 5 9 6 8    . 0 4 2 5 8 5 4       . 2 0 1 1 3 0 9     . 3 6 8 0 6 2 6

L e v e l  2 :  s c i d                  

                                                                              

   R a n d o m - e f f e c t s  P a r a m e t e r s      E s t i m a t e    S t d .  E r r .      [ 9 5 %  C o n f .  I n t e r v a l ]

                                                                              

                                                                              

        c o n s     - 1 . 1 3 0 1 7 7    . 0 5 1 7 3 7 3    - 2 1 . 8 4    0 . 0 0 0      - 1 . 2 3 1 5 8    - 1 . 0 2 8 7 7 4

                                                                              

    s m o k i n g 2         C o e f .    S t d .  E r r .       z     P > | z |      [ 9 5 %  C o n f .  I n t e r v a l ]

                                                                              

N u m b e r  o f  i t e r a t i o n s  =           5

R u n  t i m e  ( s e c o n d s )    =        4 . 9 5

                                                           

           s c i d         1 2 8          1 8       1 2 5 . 5        1 0 1 2

                                                           

 L e v e l  V a r i a b l e      G r o u p s     M i n i m u m     A v e r a g e     M a x i m u m

                    N o .  o f        O b s e r v a t i o n s  p e r  G r o u p

                                                           

E s t i m a t i o n  a l g o r i t h m :  I G L S ,  M Q L 1

B i n o m i a l  l o g i t  r e s p o n s e  m o d e l

M L w i N  2 . 2 9  m u l t i l e v e l  m o d e l                      N u m b e r  o f  o b s       =      1 6 0 7 0
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quietly runmlwin smoking2 cons, level3(w1nhood1:cons) 
level2(scid:cons) level1(aid:) discrete(dist(binomial) link(logit) 
denom(denom)) nopause  
 
runmlwin smoking2 cons, level3(w1nhood1:cons) level2(scid:cons) 
level1(aid:) discrete(dist(binomial) link(logit) denom(denom)) 
mcmc(cc) initsprevious nopause 
 
The output for the cross-classified null logistic model can be found below. 
 

 
 
More predictors can be added to the model by including additional variables after the outcome variable. 
Here fixed effects are added at the individual, school, and neighborhood levels. The last line in the cross-
classified model requests that a table of odds ratios be output in addition to the table of logit parameter 
estimates. 
 
sort w1nhood1 scid aid 
quietly runmlwin smoking2 age female publicassist highschool black 
hispanic sch_publicasst sch_hsed sch_propwhite tract_assistance 
tractprop_hs tractprop_white cons, level3(w1nhood1:cons) 
level2(scid:cons) level1(aid:) discrete(dist(binomial) link(logit) 
denom(denom)) nopause  
 

                                                                              

                   v a r ( c o n s )     . 3 5 6 1 8 1 1   . 0 6 0 5 3 9 9    1 0 1 2    . 2 5 2 5 0 5 4   . 4 8 9 4 3 9 3

L e v e l  2 :  s c i d                  

                                                                              

                   v a r ( c o n s )     . 0 4 8 2 3 8 2   . 0 1 6 8 7 3 4      1 1    . 0 2 5 6 4 0 5   . 0 8 7 2 1 3 5

L e v e l  3 :  w 1 n h o o d 1              

                                                                              

   R a n d o m - e f f e c t s  P a r a m e t e r s        M e a n    S t d .  D e v .    E S S      [ 9 5 %  C r e d .  I n t ]

                                                                              

                                                                              

        c o n s     - 1 . 2 2 6 3 4 4    . 0 5 6 4 2 8 7        9 2    0 . 0 0 0     - 1 . 3 3 7 1 1 7    - 1 . 1 2 0 5 0 8

                                                                              

    s m o k i n g 2         M e a n     S t d .  D e v .      E S S      P        [ 9 5 %  C r e d .  I n t e r v a l ]

                                                                              

B a y e s i a n  D I C                =    1 7 5 2 1 . 8 4

E f f e c t i v e  n o .  o f  p a r s  ( p d )  =      1 9 0 . 8 0

D e v i a n c e  ( t h e t a b a r )         =    1 7 1 4 0 . 2 4

D e v i a n c e  ( d b a r )             =    1 7 3 3 1 . 0 4

R u n  t i m e  ( s e c o n d s )          =        6 3 . 6

T h i n n i n g                    =           1

C h a i n                       =        5 0 0 0

B u r n i n                      =         5 0 0

                                                           

           s c i d         1 2 8          1 8       1 2 5 . 5        1 0 1 2

       w 1 n h o o d 1        2 1 1 1           1         7 . 6         2 6 0

                                                           

 L e v e l  V a r i a b l e      G r o u p s     M i n i m u m     A v e r a g e     M a x i m u m

                    N o .  o f        O b s e r v a t i o n s  p e r  G r o u p

                                                           

E s t i m a t i o n  a l g o r i t h m :  M C M C

B i n o m i a l  l o g i t  r e s p o n s e  m o d e l

M L w i N  2 . 2 9  m u l t i l e v e l  m o d e l                      N u m b e r  o f  o b s       =      1 6 0 7 0
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runmlwin smoking2 age female publicassist highschool black hispanic 
sch_publicasst sch_hsed sch_propwhite tract_assistance tractprop_hs 
tractprop_white cons, level3(w1nhood1:cons) level2(scid:cons) 
level1(aid:) discrete(dist(binomial) link(logit) denom(denom)) 
mcmc(cc) initsprevious nopause 
runmlwin, noheader noretable or 
 
The output for the model with additional fixed effects can be found on the following page.  Using the 
odds ratio option will give two tables of parameter estimates, one of the logits and one with odds ratios. 

 

 
 

                                                                              

        c o n s      . 0 1 6 7 1 1 4    . 0 0 4 4 6 9 6         7    0 . 0 0 0      . 0 1 0 3 9 0 8     . 0 2 7 3 2 6 2

t r a c t p r o p _ ~ e      . 9 9 8 7 6 3 6    . 0 0 1 6 7 2 1        1 9    0 . 2 5 0      . 9 9 4 7 8 4 8     1 . 0 0 1 7 1 9

t r a c t p r o p _ h s      1 . 0 0 4 9 8 7    . 0 0 2 8 7 2 5        4 6    0 . 0 3 9      . 9 9 9 6 2 1 1     1 . 0 1 0 8 2 2

t r a c t _ a s s i ~ e      . 9 9 3 5 9 0 7    . 0 0 5 8 0 4 8        4 8    0 . 1 4 4      . 9 8 3 3 9 2 6     1 . 0 0 4 9 7 7

s c h _ p r o p w h ~ e      1 . 0 0 6 6 1 8    . 0 0 2 1 3 3 2        3 3    0 . 0 0 0      1 . 0 0 2 7 0 3     1 . 0 1 0 9 9 8

    s c h _ h s e d      . 9 8 7 1 9 1 7    . 0 0 5 5 6 8 4        4 5    0 . 0 1 2      . 9 7 6 8 0 8 4     . 9 9 8 8 8 3 4

s c h _ p u b l i c ~ t      1 . 0 2 3 8 9 4     . 0 0 6 4 5 7        4 8    0 . 0 0 0      1 . 0 1 2 2 2 9      1 . 0 3 7 0 4

    h i s p a n i c      . 7 0 7 9 1 5 1    . 0 5 0 1 8 5 4       3 2 0    0 . 0 0 0      . 6 1 0 7 7 3 4     . 8 0 8 2 1 1 5

       b l a c k      . 3 0 6 8 1 4 4    . 0 2 4 0 3 3 9       1 7 7    0 . 0 0 0      . 2 6 1 4 0 8 3     . 3 5 3 2 0 9 6

  h i g h s c h o o l      . 9 9 9 5 0 5 5     . 0 6 1 5 3 8        8 5    0 . 4 7 9      . 8 8 1 6 0 0 7     1 . 1 2 8 2 9 9

p u b l i c a s s i s t      1 . 3 6 1 7 7 2    . 0 9 8 0 7 1 4       6 3 1    0 . 0 0 0      1 . 1 7 9 6 6 5     1 . 5 6 1 6 5 3

      f e m a l e       1 . 0 1 0 7 2    . 0 3 8 5 4 5 3       5 7 8    0 . 3 9 8      . 9 4 0 1 2 7 5      1 . 0 8 9 0 4

         a g e      1 . 2 0 1 3 2 3     . 0 1 4 8 2 3         8    0 . 0 0 0      1 . 1 6 8 2 0 3     1 . 2 2 9 4 8 8

                                                                              

    s m o k i n g 2    O d d s  R a t i o    S t d .  D e v .      E S S      P        [ 9 5 %  C r e d .  I n t e r v a l ]

                                                                              

 

.  r u n m l w i n ,  n o h e a d e r  n o r e t a b l e  o r

                                                                              

                   v a r ( c o n s )     . 0 9 8 8 2 1 8   . 0 2 3 6 5 2 6     2 9 6    . 0 5 8 9 9 4 9   . 1 5 0 8 8 6 2

L e v e l  2 :  s c i d                  

                                                                              

                   v a r ( c o n s )      . 0 2 0 7 0 5   . 0 0 7 2 2 2 7       9    . 0 1 0 3 8 8 7   . 0 3 7 1 7 2 8

L e v e l  3 :  w 1 n h o o d 1              

                                                                              

   R a n d o m - e f f e c t s  P a r a m e t e r s        M e a n    S t d .  D e v .    E S S      [ 9 5 %  C r e d .  I n t ]

                                                                              

                                                                              

        c o n s     - 4 . 1 2 6 0 2 2    . 2 6 0 6 2 5 4         6    0 . 0 0 0     - 4 . 5 6 6 8 3 7     - 3 . 5 9 9 9 1

t r a c t p r o p _ ~ e     - . 0 0 1 2 3 8 6    . 0 0 1 6 7 4 9        1 9    0 . 2 5 0     - . 0 0 5 2 2 8 9     . 0 0 1 7 1 7 8

t r a c t p r o p _ h s      . 0 0 4 9 7 0 4    . 0 0 2 8 5 7 8        4 6    0 . 0 3 9     - . 0 0 0 3 7 8 9     . 0 1 0 7 6 3 4

t r a c t _ a s s i ~ e      - . 0 0 6 4 4 7    . 0 0 5 8 4 0 2        4 8    0 . 1 4 4     - . 0 1 6 7 4 6 8     . 0 0 4 9 6 4 4

s c h _ p r o p w h ~ e      . 0 0 6 5 9 3 7    . 0 0 2 1 1 8 7        3 3    0 . 0 0 0      . 0 0 2 6 9 9 6     . 0 1 0 9 3 7 8

    s c h _ h s e d     - . 0 1 2 9 0 6 9    . 0 0 5 6 3 8 4        4 5    0 . 0 1 2     - . 0 2 3 4 6 4 8    - . 0 0 1 1 1 7 3

s c h _ p u b l i c ~ t      . 0 2 3 5 9 2 9     . 0 0 6 3 0 3        4 8    0 . 0 0 0      . 0 1 2 1 5 4 5     . 0 3 6 3 7 0 1

    h i s p a n i c     - . 3 4 7 9 4 7 3    . 0 7 1 0 0 8 6       3 1 3    0 . 0 0 0     - . 4 9 3 0 2 9 2    - . 2 1 2 9 3 1 5

       b l a c k     - 1 . 1 8 4 5 8 2    . 0 7 8 4 2 4 6       1 7 5    0 . 0 0 0     - 1 . 3 4 1 6 7 2    - 1 . 0 4 0 6 9 4

  h i g h s c h o o l     - . 0 0 2 3 8 7 3    . 0 6 1 5 2 8 1        8 5    0 . 4 7 9     - . 1 2 6 0 1 6 1     . 1 2 0 7 1 1 2

p u b l i c a s s i s t      . 3 0 6 1 9 6 8    . 0 7 1 9 8 6 2       6 2 8    0 . 0 0 0      . 1 6 5 2 3 0 9     . 4 4 5 7 4 5 1

      f e m a l e      . 0 0 9 9 3 6 4    . 0 3 8 1 0 6 6       5 7 7    0 . 3 9 8     - . 0 6 1 7 3 9 8     . 0 8 5 2 9 6 8

         a g e      . 1 8 3 3 4 6 9    . 0 1 2 3 6 8 6         8    0 . 0 0 0      . 1 5 5 4 6 6 9     . 2 0 6 5 9 7 7

                                                                              

    s m o k i n g 2         M e a n     S t d .  D e v .      E S S      P        [ 9 5 %  C r e d .  I n t e r v a l ]

                                                                              

B a y e s i a n  D I C                =    1 7 1 3 3 . 2 1

E f f e c t i v e  n o .  o f  p a r s  ( p d )  =      1 2 8 . 8 2

D e v i a n c e  ( t h e t a b a r )         =    1 6 8 7 5 . 5 7

D e v i a n c e  ( d b a r )             =    1 7 0 0 4 . 3 9

R u n  t i m e  ( s e c o n d s )          =         1 5 3

T h i n n i n g                    =           1

C h a i n                       =        5 0 0 0

B u r n i n                      =         5 0 0

                                                           

           s c i d         1 2 8          1 8       1 2 5 . 5        1 0 1 2

       w 1 n h o o d 1        2 1 1 1           1         7 . 6         2 6 0

                                                           

 L e v e l  V a r i a b l e      G r o u p s     M i n i m u m     A v e r a g e     M a x i m u m

                    N o .  o f        O b s e r v a t i o n s  p e r  G r o u p

                                                           

E s t i m a t i o n  a l g o r i t h m :  M C M C

B i n o m i a l  l o g i t  r e s p o n s e  m o d e l

M L w i N  2 . 2 9  m u l t i l e v e l  m o d e l                      N u m b e r  o f  o b s       =      1 6 0 7 0




