RESEARCH

Open Access

Modeling contextual effects using individual-level data and without aggregation: an illustration of multilevel factor analysis (MLFA) with collective efficacy

Erin C Dunn^{1*}, Katherine E Masyn², William R Johnston³ and SV Subramanian⁴

Abstract

Population health scientists increasingly study how contextual-level attributes affect individual health. A major challenge in this domain relates to measurement, i.e., how best to measure and create variables that capture characteristics of individuals and their embedded contexts. This paper presents an illustration of multilevel factor analysis (MLFA), an analytic method that enables researchers to model contextual effects using individual-level data without using derived variables. MLFA uses the shared variance in sets of observed items among individuals within the same context to estimate a measurement model for latent constructs; it does this by decomposing the total sample variance-covariance matrix into *within*-group (e.g., individual-level) and *between*-group (e.g., contextual-level) matrices and simultaneously modeling *distinct* latent factor structures at each level. We illustrate the MLFA method using items capturing collective efficacy, which were self-reported by 2,599 adults in 65 census tracts from the Los Angeles Family and Neighborhood Survey (LAFANS). MLFA identified two latent factors at the individual level and one factor at the neighborhood level. Indicators of collective efficacy performed differently at each level. The ability of MLFA to identify different latent factor structures at each level and identify attributes of contexts relevant to health.

Keywords: Multilevel, Factor analysis, Environment, Ecological, Context, Latent variable, Collective efficacy, Neighborhood

Population health scientists are increasingly interested in studying multilevel phenomena, or how features of the social and physical contexts in which individuals live, learn, work, and play (e.g., neighborhoods, schools, or workplaces) are associated with individual health, disease, and behavior [1,2]. A major challenge faced by multilevel researchers relates to measurement and how best to measure features of contexts and create variables that capture both the characteristics of individuals and the contexts in which they are embedded. Identifying novel measures to capture the features of contexts that may be relevant to health is an area where multilevel researchers have urged for more progress [3-8].

* Correspondence: erindunn@pngu.mgh.harvard.edu

¹Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, Simches, Room 6.252, Boston, MA 02114, USA Full list of author information is available at the end of the article

As shown in Table 1, several approaches have been used to create variables that capture collective efficacy

© 2015 Dunn et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

One of the best examples of the challenges related to and limitations of existing approaches with regards to measurement of multilevel phenomena is evident in research on collective efficacy. Collective efficacy was first articulated in a paper by Sampson and colleagues as a feature of neighborhoods that consists of two dimensions: social cohesion among neighbors (social cohesion) and neighbors' willingness to intervene on behalf of the common good (informal social control) [9]. Since its introduction, collective efficacy has been one of the most heavily studied constructs in epidemiological and population-based research, particularly neighborhood studies, with more than 5,000 articles citing the paper introducing the concept. Collective efficacy has been found in numerous empirical studies to be positively associated with many health and developmental outcomes [9-14].

Variable approach	Description	Examples
Derived variable	Derived variables are created by summarizing the characteristics of individuals within a group, using means, medians, proportions, or measures of dispersion (e.g., variances) or other aggregation approaches	
Based on group-level mean	Use average individual responses to items on a given scale; these means are then subsequently averaged across individuals living in the same context (e.g., neighborhood) to arrive at a contextual-level measure.	[10,14,16,17]
Based on group-level variance	Use average individual responses to items on a given scale; the variance (or standard deviation) in these means are then examined among individuals living in the same context (e.g., neighborhood) to arrive at a contextual-level measure.	[19]
Factor Analysis	Capture the shared variance among an observed set of variables in terms of a potentially smaller number of unobserved constructs or latent factors.	
Single-level factor analysis	Latent factors are estimated at only one level (i.e., the individual or contextual level).	[18]
Multilevel factor analysis (MLFA)	Latent factors are estimated at two-levels of analysis. Latent factors structures can differ at each level of analysis.	[24-28]
Hierarchical Latent Variable Model	A special case of the 2-level MLFA that imposes stricter parameter constraints than the most general MLFA wherein latent factors are estimated at only the individual level with the factor variances decomposed into within- and between-group components.	[9,51]

Table 1 Approaches used to construct variables to model the effects of collective efficacy or related social-environmental variables, such as income inequality or social capital

or related contextual-level social phenomena, such as income inequality or social capital. The most popular approach has been to create a derived variable, which entails summarizing the characteristics of individuals within a group, using means, medians, proportions, or measures of dispersion (e.g., variances) or other aggregation approaches [15]. Means have been the most popular type of derived variable used in research on collective efficacy as well as other areas of multilevel research. To construct these group or contextual-level means, the major strategy has been to first average individual responses to items on a given scale; these means are then subsequently averaged across individuals living in the same context (e.g., neighborhood) to arrive at a contextual-level measure [10,14,16-19].

A second approach has been to use factor analytic or latent variable models to determine whether multiple items should be grouped together in a common construct. Although factor analytic methods can be conducted at one or more levels of analysis (e.g., individual level, contextual level, or both), the majority of studies have focused on single-level factor analytic approaches [18]. Few studies have used latent variable approaches to study collective efficacy, even though the authors introducing the concept used a hierarchical linear latent variable modeling approach to study collective efficacy and estimate its relationship to violent crime [9].

While both derived variables and single-level factor analytic approaches are widely used and easy to construct,

their use in multilevel research may be problematic in some cases. For example, there may be instances when more than one variable best represents the contextuallevel phenomenon. Moreover, there may also be instances when it is misleading to assume the function of the items and how they relate to each other is the same at all levels of analysis. New approaches are therefore needed that allow researchers to model contextual effects using individual-level data when existing measurement strategies (e.g., derived variables, single-level factor analyses) are not ideal.

In an effort to expand the population health scientist's toolkit, this paper provides an applied example of one analytic technique – multilevel factor analysis (MLFA) – that is a good alternative to existing approaches to create group or contextual-level measures. MLFA is not a new method, as it was first articulated more than 25 years ago [20-23]. However, the method has not yet been widely used, especially in population health and epidemiology. MLFA allows researchers to both model contextual effects using individual-level data without using derived variables and create variables that capture individual as well as group-level variability using one or more measures at each level of analysis (see for example [24-28]).

MLFA is part of a family of factor analytic models that seek to capture the shared variance among an observed set of variables in terms of a potentially smaller number of unobserved constructs or latent factors. Conceptually and analytically, MLFA is distinct from the other measurement approaches, including derived variables, singlelevel factor analyses, and hierarchical latent variable models (HLVM), which all assume the constructs of interest are the same at each level of analysis. Singlelevel exploratory (EFA) or confirmatory factor analysis (CFA) estimates latent factors at only one level (i.e., the individual or contextual level). HLVM also estimates latent factors at only one level but captures both within- and between-level variability in those factors. In contrast, MLFA allows for different latent factor structures at each level of analysis. This occurs because the MLFA decomposes the total sample variance-covariance matrix into within-group (i.e., individual-level, within a context) and betweengroup (i.e., contextual-level) matrices and simultaneously models distinct latent factor structures at each of these levels [22,29,30]. As we detail below, HLVM is a special case of MLFA. Thus, MLFA can be viewed as an analytic approach that allows the user to relax some of the potentially untenable assumptions and constraints imposed by the HLVM specification.

In this methodological demonstration, we apply MLFA to examine the underlying factor structure of items measuring collective efficacy and compare the results to the closest analytic alternative, the HLVM. Although our focus is on collective efficacy for demonstration purposes, the MLFA technique can be applied to numerous other possible contextual-level social constructs. The MLFA technique could also be extended to evaluate the measurement quality (e.g., reliability and validity) of contextual or ecological measures, including those that are directly assessed (rather than ascertained through data collected on individuals), as has been advocated by researchers concerned with "ecometrics" [6,31].

A web-based Technical Guide (see Additional file 1) is provided to guide users in implementing MLFA in MPlus. This Technical Guide is intended to guide readers on the procedures to fit and interpret results from two multilevel factor analytic models: (1) a multilevel exploratory factor analysis (ML-EFA), and (2) multilevel confirmatory factor analysis (ML-CFA).

Methods

Sample and study design

Data came from the Los Angeles Family and Neighborhood Survey (L.A. FANS), a longitudinal study examining the impact of neighborhoods on children's development and well-being [32]. The study followed a stratified random sample of 3,090 households from 65 census tracts in Los Angeles County. Within each household that contained both adults and school-aged children, a randomly selected adult (RSA) was chosen, who completed surveys at Wave I (Spring 2000-Fall 2001). For the current study, we used data on perceptions of the neighborhood collected from the RSA. Our analytic sample consisted of 2,594 RSA respondents living in 65 census tracts. Respondents were primarily female (69.1%), Latino(a) (59.5%), and non-home owners (59.4%), with a mean age of 38.8 years (sd = 13.6).

Measures

Collective efficacy

Based on previous work [9], collective efficacy was measured using 10 items that captured both perceived neighborhood informal social control and social cohesion [10].

Social cohesion was measured using seven items (refer to items 1–7 in Table 2) rated on a five-point scale (1 = strongly agree to 5 = strongly disagree). Informal social control was measured using three items (refer to items 8–10 in Table 2) rated on a five-point scale (1 = very unlikely to 5 = very likely) indicating how likely the respondent would be to intervene if they witnessed these three events.

Statistical analysis

We used multilevel factor analysis (MLFA), a method that models the responses for person *i* in cluster *j* (e.g., neighborhood) to a set of *M* items (or indicator variables), denoted $\mathbf{y}_{ij} = (y_{1ij}, \dots, y_{Mij})$, as a function of both individual-level (i.e., *w*ithin-group or "Level 1") and neighborhood-level (i.e., *b*etween-group or "Level 2") factors, represented by $\mathbf{\eta}_W$ and $\mathbf{\eta}_B$, respectively.

The within-group model is given by

$$\mathbf{y}_{ij} = \mathbf{v}_j + \mathbf{\Lambda}_W \mathbf{\eta}_{Wij} + \mathbf{\varepsilon}_{ij},\tag{1}$$

where \mathbf{v}_j is a vector of the neighborhood *j*'s mean responses for each of the *M* items for the population of individuals embedded in neighborhood *j*; $\mathbf{\eta}_{Wij}$ is a vector of individual *i*'s values for the individual-level factors, with $E(\mathbf{\eta}_W) = \mathbf{0}$ and $\operatorname{Var}(\mathbf{\eta}_W) = \mathbf{\psi}_W$; $\mathbf{\Lambda}_W$ is a matrix of factor loadings describing the relationships between the individual-level factors, $\mathbf{\eta}_{W}$, and the indicator variables, \mathbf{y}_{ij} ; and $\mathbf{\varepsilon}_{ij}$ is the residual for individual *i* in neighborhood *j*, with $E(\mathbf{\varepsilon}) = \mathbf{0}$ and $\operatorname{Var}(\mathbf{\varepsilon}) = \mathbf{0}$. Typically, with continuous *y*s, the residuals and factors are specified to be normally distributed, with all residuals uncorrelated with each other and with the factors.

The between-group model is given by

$$\mathbf{v}_j = \mathbf{\gamma} + \mathbf{\Lambda}_B \mathbf{\eta}_{Bj} + \mathbf{\zeta}_j, \tag{2}$$

where $\boldsymbol{\gamma}$ is a vector of overall means for the *M* items; $\boldsymbol{\eta}_{Bj}$ is a vector of neighborhood *j*'s values for the grouplevel factors, with $E(\boldsymbol{\eta}_B) = \boldsymbol{0}$ and $\operatorname{Var}(\boldsymbol{\eta}_B) = \boldsymbol{\psi}_B$; $\boldsymbol{\Lambda}_B$ is a

	Intraclass correlation coefficient				
	Total sample	Sample one	Sample two		
Indicator variables	N = 2594	n = 1291	n = 1303		
1this is a close-knit neighborhood	0.083	0.112	0.121		
2there are adults that kids look up to	0.198	0.253	0.216		
3people around here are willing to help their neighbors	0.133	0.142	0.174		
4people in this neighborhood generally don't get along with each other	0.149	0.148	0.178		
5adults watch out that kids are safe	0.085	0.112	0.089		
6people in this neighborhood do not share the same values	0.120	0.174	0.114		
7people in this neighborhood can be trusted	0.203	0.198	0.254		
8children were skipping school and hanging out on a street corner	0.104	0.131	0.125		
9children were spray-painting graffiti on a local building	0.262	0.299	0.273		
10children were showing disrespect to an adult	0.062	0.093	0.090		

Table 2 Intraclass Correlation Coefficients (ICC) for indicator variables in the Los Angeles Family and Neighborhood
Study (LAFANS) n = 2594

ICC refers to the proportion of variance in the indicator variable that is due to differences across neighborhoods. Neighborhoods were defined here as census tracts.

Items number 4 and 6 were reverse coded.

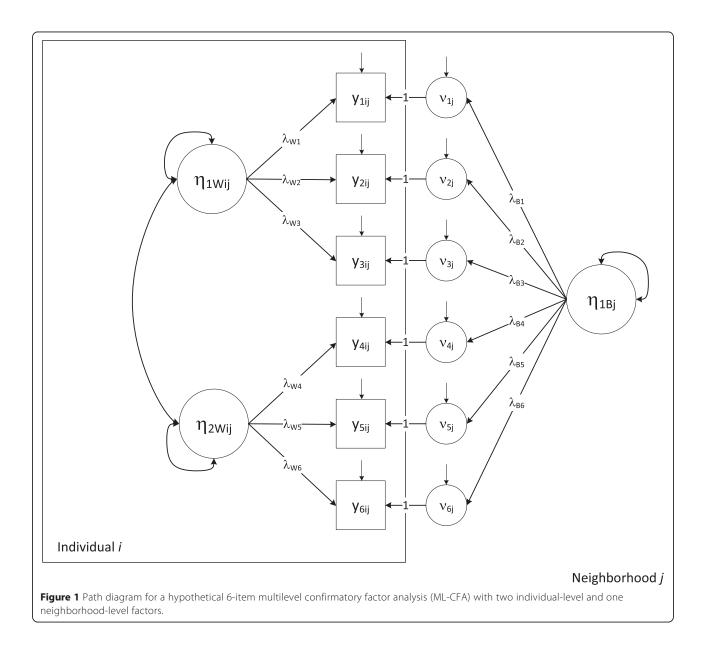
matrix of factor loadings describing the relationships between the group-level factors, η_B , and the group-level random intercept indicators, \mathbf{v}_j ; and ζ_j is the residual for neighborhood *j*, with $E(\zeta) = \mathbf{0}$ and $\operatorname{Var}(\zeta) = \sigma$. Like the within-group model, the residuals and factors are specified to be normally distributed, with all residuals uncorrelated with each other and with the factors.

Substituting Equation 2 into Equation 1 yields a single combined model:

$$\mathbf{y}_{ij} = \mathbf{\gamma} + \mathbf{\Lambda}_W \mathbf{\eta}_{Wij} + \mathbf{\Lambda}_B \mathbf{\eta}_{Bj} + \mathbf{\zeta}_j + \mathbf{\varepsilon}_{ij}, \qquad (3)$$

showing that the observed responses at the individual level are specified as distinct effects of both individual- and group-level factors. These effects are depicted in Figure 1 by a path diagram for a hypothetical six-item MLFA with two within-group and one between-group factors. The variables (observed in squares and latent in circles) within the "Individual i" box are variables that vary across each individual embedded in neighborhood j. The variables outside the "Individual i" box and within the "Neighborhood j" box vary across each neighborhood, but are constant for all individuals within a given neighborhood. The individual-level and neighborhood-level residuals are represented by the small arrows pointing to the observed ys and the neighborhood-level random intercept, respectively.

The model described in Equations 1 and 2 can be extended to non-continuous (e.g., binary, ordinal, count, etc.) indicator variables using a generalized linear model formulation. Briefly (and as outlined in greater detail in [33,34]), any vector of indicator variables, \mathbf{y}_{ij} , can be expressed as the sum of the individual expected values, μ_{ij} and the individual residuals, ε_{ij} ; that is,


$$\mathbf{y}_{ij} = \mathbf{\mu}_{\mathbf{y}_{ii}} + \mathbf{\varepsilon}_{ij}.\tag{4}$$

The distribution of the residuals is chosen to correspond to the measurement scale of the observed indicators, e.g., a Bernoulli distribution for binary indicators. A link function, *g*, then relates the individual expected values to a linear combination of the latent factors; that is,

$$g\left(\mathbf{\mu}_{\mathbf{y}_{ij}}\right) = \mathbf{v}_{j} + \mathbf{\Lambda}_{W} \mathbf{\eta}_{Wij}.$$
 (5)

The between-group model remains the same. In the case of continuous approximately normally distributed observed outcomes, the usual specification is the identity link function, resulting in straightforward linear regressions relating the observed variables to the latent factor. In the case of binary indicators, one might choose a logit link function, resulting in logistic regressions relating the observed categorical indicators to the latent factors. In the case of an observed ordinal response scale, as with our indicators of collective efficacy, we used the ordinal probit link function [35]. All models were estimated via weighted least squares using a diagonal weight matrix with standard errors and mean- and variance-adjusted chi-square test statistics that used a full weight matrix (WLSMV).

To showcase the MLFA approach, we conducted our analyses in four steps. First, we calculated intraclass correlation coefficients (ICCs) for each item. These ICCs

provide information about the proportion of variance in each item that is due to differences between neighborhoods. Second, we used polychoric correlations (where each correlation is a measure of the pairwise association for two ordinal variables, which rests upon the assumption of an underlying joint continuous distribution) to examine the strength, direction, and magnitude of the associations among the items. We examined these associations in two correlation matrices: (1) the within-level (individual) matrix; and (2) the between-level (neighborhood) matrix. Third, we randomly split the sample into two equally sized subsamples and conducted a multilevel exploratory analysis (ML-EFA) with one subsample and a confirmatory analysis (ML-CFA) with the other. An EFA is ideal to use in situations when researchers lack hypotheses concerning the number of latent factors underlying an item set or what the relationships are between each factor and the items; a CFA is more appropriate when researchers have hypotheses regarding the number of factors and the factor-item relationships or are seeking to test the validity of a theoretical model [36,37]. Both techniques are shown here for illustration purposes.

Finally, we fit the hierarchical latent variable model (HLVM) outlined by Sampson et al. [9] as a comparison. The HLVM is a special case of the MLFA, where the factor measurement model is the same (i.e., same number of factors, same loading patterns, and same loading values) at the within- and between-group models and there is no between-group item-specific residual. HLMV

can also be seen as an extension of a single-level factor analysis, where the overall factor variance-covariance structure is comprised of within- and between-group variance-covariance components. The important distinction between the MLFA and HLVM is that the factors in the HLVM are only defined at the within-level while in the MLFA there are *distinct* factors defined at *both* the within- and between-level models. For the HLVM, the within-group is the same as for the MLFA, as given in Equation (1). The between-group model is given by

$$\mathbf{v}_{j} = \mathbf{\gamma} + \mathbf{\Lambda}_{W} \mathbf{\eta}_{Bj}. \tag{6}$$

Substituting Equation (6) into Equation (1) yields a single combined model for the HLVM:

$$\mathbf{y}_{ij} = \mathbf{\gamma} + \mathbf{\Lambda}_{W} \Big(\mathbf{\eta}_{Wij} + \mathbf{\eta}_{Bj} \Big) + \mathbf{\epsilon}_{ij}, \tag{7}$$

where $\boldsymbol{\gamma}$ is a vector of overall means for the *M* items; $\boldsymbol{\eta}_{Wij}$ and $\boldsymbol{\eta}_{Bj}$ capture within-group across-person variability and between-group variability, respectively, in a set of latent factors, $\boldsymbol{\eta}$, with $E(\boldsymbol{\eta}) = \boldsymbol{0}$ and $\operatorname{Var}(\boldsymbol{\eta}) = \boldsymbol{\psi}_W + \boldsymbol{\psi}_B$; $\boldsymbol{\Lambda}_W$ is a matrix of factor loadings describing the relationships between the factors, $\boldsymbol{\eta}$, and the indicator variables, \mathbf{y}_{ij} ; and $\boldsymbol{\varepsilon}_{ij}$ is the residual for individual *i* in neighborhood *j*, with $E(\boldsymbol{\varepsilon}) = \boldsymbol{0}$ and $\operatorname{Var}(\boldsymbol{\varepsilon}) = \boldsymbol{\theta}$. The HLVM can be more simply written as

$$\begin{aligned} \mathbf{y}_{ij} &= \mathbf{\gamma} + \mathbf{\Lambda} \mathbf{\eta}_{ij} + \mathbf{\varepsilon}_{ij}, \\ \mathbf{\eta}_{ij} &= \mathbf{\alpha}_j + \mathbf{\xi}_{ij}, \end{aligned} \tag{8}$$

showing that the observed indicators are a function of only individual-level factors with the variance-covariance of those factors explicitly decomposed by the model into within-group and between-group variance components. As with the MLFA, the HLVM can use a generalized linear model approach to specify the relationships between the items and the factor in the case of non-continuous item responses. The specific HLVM model used by Sampson et al. [9], expressed as a three-level model with items nested within persons nested within clusters, imposes the additional constraints of all factor loadings being fixed at one and all item residual variances constrained to be equal.

We conducted all analyses using Mplus software version 7. Mplus handles missing data under the missing at random assumption (MAR) using the WLSMV estimator, which allows missingness to be a function of the observed covariates, but not observed outcomes, as is the case for full information maximum likelihood (FIML). When there are no covariates in the model, as is the case here, this is analogous to pairwise present analysis [38,39]. Analyses also included sampling weights to adjust for non-response and the unequal probability of selection of neighborhoods and households into the sample. Across all models, we evaluated goodness-of-fit using the model chi-square test, normed comparative fit index (CFI; [40]), root mean square error of approximation (RMSEA; [41]), and the standardized root mean square residual (SRMR; [38]). These statistics provide information about how well the model-estimated population correlations reproduce the sample correlations. Acceptable model fit was determined by a non-significant chi-square test, CFI values greater than 0.95, and RMSEA and SRMR values below 0.10 [42]. The CFI, RMSEA, and SRMR values were given more emphasis than the chisquare test, as the chi-square test statistic is often significant (implying there is significant misfit of the model to the data) when the sample size is large. In the MLFA, an SRMR is provided at both the within and between level. As there are no established guidelines for interpreting the SRMR at the between level, we considered the guidelines that are typically applied for single-level analyses (≤ 0.10). We also examined the residuals for the between-level correlation matrix, which are an indicator of model fit.

Of note, there are alternative statistical software packages, such as MLwiN or MLwiN via Stata, that can be used to estimate MLFA models. Readers interested in fitting the MLFA using MLwiN are referred to the MLwiN website: http://www.bristol.ac.uk/cmm/ software/mlwin/. In addition, the MLFA method can also be fit using Markov chain Monte Carlo (MCMC) methods. Such Bayesian estimation procedures may provide a particularly good alternative to maximum likelihood methods in instances when maximum likelihood is too computationally intensive or when there are some instances of a small number of individuals per cluster or when there are a small number of overall clusters [21].

Results

Intraclass correlation coefficients (ICC)

ICC estimates ranged from small to large in magnitude and were generally equivalent across our split samples (Table 2). In the total sample, the largest estimated ICC (0.262) was for the item "children were spray-painting graffiti on a local building." The lowest ICC in the total sample (0.062) was for "children were showing disrespect to an adult." Thus, most of the variability in these items was due to differences across individuals *within* rather than *between* neighborhoods. However, there was considerable variability among the indicators as to the proportion of variation explained between neighborhoods. This suggests that neighborhood-level variation is not uniform across indicators and that for some indicators, neighborhood-level influences may be more important.

Correlations

As shown in Tables 3 and 4, the within level (individual) and between level (neighborhood) had different correlation structures. While the average absolute correlation value at the within level was 0.304 (range r = 0.093 to r = 0.557), the average absolute correlation value at the between level was higher (average = 0.685; range r = 0.205 to r = 0.934). Some items also had markedly differently correlations at each level. For example, the items "people here do not get along with each other" and "people would intervene if children were spray painting graffiti" had a very strong correlation at the between-level (r = 0.239). These finding suggest the item-to-item relationships differ across the two levels of analysis (within- and between-level).

Multilevel factor analysis (MLFA) results Multilevel exploratory factor analysis (ML-EFA)

The final ML-EFA model, which was selected based on good model-data consistency, parsimony, and interpretability, had two within-level factors and one between-level factor (Table 5). In this factor solution, the largest factor loadings for each item at the within level (0.418 to 0.773) and between level (0.462 to 0.972) ranged from moderate to high. In addition to good overall model fit, as evidenced by the CFI of 0.947 and RMSEA of 0.059, this solution also had excellent model fit specifically at the within and between levels, as shown in the SRMR values at each level 0.039 and 0.068, respectively. In contrast, the next best fitting model – the two factor within and two-factor between model – had a good overall fit (SRMR_{within} = 0.039; SRMR_{between} = 0.045). However, the second between-level factor had only one significantly

Table 3 Correlations among indicators at the within-level

loading item (refer to page 21 of the online Technical Guide.

Beyond its empirical fit, the ML-EFA solution was also aligned with prior theory. At the within level, the first factor mapped on to the construct social cohesion and the second factor mapped on to the construct informal social control, as described by others [9,10]. At the between level, the indicator variables only supported one overarching factor, which has previously been labeled as collective efficacy [9,10]. Interestingly, the sixth item (people in this neighborhood do not share the same values) did not load significantly on either factor at the within level, but had a significant factor loading at the between level. This finding illustrates that indicator variables can perform differently at each level of analysis and therefore items should only be removed from a MLFA if they are determined not to function at both levels of analysis.

The first and second within-level factors were moderately correlated (r = 0.521). The communalities, or itemspecific R^2 values, which refer to the proportion of an indicator's total variance accounted for by the factor solution, ranged at the within level from a low of 8.4% (for respondents' rating of people in the neighborhood sharing the same values) to a high of 57.1% (for respondents' rating of people's willingness to help neighbors) at the within level. At the between level, the communalities were higher across the items, ranging from a low of 21.4% (for neighborhoods' collective tendency to intervene if children show disrespect to an adult) to a high of 94.4% (for neighborhoods' collective tendency to watch out that kids are safe).

Multilevel confirmatory factor analysis (ML-CFA)

The ML-EFA results from the first subsample were cross-validated using ML-CFA for the second subsample.

		1	2	3	4	5	6	7	8	9	10
1	CLOSEKNIT	1.000									
2	ADULTS	0.461	1.000								
3	HELP	0.483	0.467	1.000							
4	ALONG	0.210	0.310	0.368	1.000						
5	SAFE	0.395	0.377	0.458	0.240	1.000					
6	VALUES	0.153	0.093	0.165	0.321	0.141	1.000				
7	TRUST	0.408	0.422	0.528	0.309	0.487	0.234	1.000			
8	SKIP	0.256	0.207	0.296	0.174	0.333	0.124	0.358	1.000		
9	GRAFFITI	0.219	0.239	0.283	0.212	0.358	0.163	0.294	0.557	1.000	
10	DISRESPECT	0.287	0.202	0.285	0.194	0.261	0.125	0.278	0.470	0.476	1.000

CLOSEKNIT = this is a close-knit neighborhood; ADULTS = there are adults that kids look up to; HELP = people here are willing to help their neighbors; ALONG = people here don't get along with each other; SAFE = adults watch out that kids are safe; VALUES = people here do not share the same values; TRUST = people in this neighborhood can be trusted; SKIP = people would intervene if children were skipping school and hanging out on the corner; GRAFFITI = people would intervene if children were spray-painting graffiti; DISRESPECT = people would intervene if children were showing disrespect to an adult. Items 4 and 6 were reverse coded. These correlations were taken from the sample used for the multilevel exploratory factor analysis (ML-EFA).

		1	2	3	4	5	6	7	8	9	10
1	CLOSEKNIT	1.000									
2	ADULTS	0.735	1.000								
3	HELP	0.773	0.862	1.000							
4	ALONG	0.593	0.758	0.855	1.000						
5	SAFE	0.749	0.853	0.897	0.902	1.000					
6	VALUES	0.561	0.620	0.668	0.754	0.705	1.000				
7	TRUST	0.742	0.842	0.870	0.834	0.934	0.653	1.000			
8	SKIP	0.826	0.641	0.731	0.677	0.765	0.650	0.697	1.000		
9	GRAFFITI	0.729	0.858	0.870	0.857	0.865	0.725	0.823	0.757	1.000	
10	DISRESPECT	0.489	0.205	0.478	0.316	0.254	0.257	0.320	0.480	0.382	1.000

Table 4 Correlations among indicators at the between-level

CLOSEKNIT = this is a close-knit neighborhood; ADULTS = there are adults that kids look up to; HELP = people here are willing to help their neighbors; ALONG = people here don't get along with each other; SAFE = adults watch out that kids are safe; VALUES = people here do not share the same values; TRUST = people in this neighborhood can be trusted; SKIP = people would intervene if children were skipping school and hanging out on the corner; GRAFFITI = people would intervene if children were spray-painting graffiti; DISRESPECT = people would intervene if children were showing disrespect to an adult. Items 4 and 6 were reverse coded. These correlations were taken from the sample used for the multilevel exploratory factor analysis (ML-EFA).

As shown in Table 6, the fit of the ML-CFA model was good (CFI = 0.903; RMSEA = 0.079; SRMR_{within} = 0.054; SRMR_{between} = 0.073). By and large, factor loadings in the ML-CFA were similar to the ML-EFA.

We also ran an alternative ML-CFA specification with the constraints imposed by the Sampson et al. version of the HLVM described earlier. The overall fit of this model was markedly worse than the ML-CFA without these restrictions ($\chi^2 = 1445.265$; df = 86; p-value < 0.001; RMSEA = 0.110; CFI = 0.766; SRMR_{within} = 0.095; SRMR_{between} = 0.325), suggesting that a more restricted model lacked the model-data consistency observed with the less restrictive ML-CFA. Of note, a single-level factor analysis, which is the equivalent of adding to the HLVM a further constraint of zero between-level factor variance, would have a poorer fit than the HLVM. Although not the case here, it is possible that for another

dataset, the HLVM specification could fit equivalent to the MLFA. Such a finding would suggest that the data do not support a different factor structure at the within and between-group levels, and the HLVM could be favored as a more parsimonious model. A researcher, however, would not be able to make this determination without comparing the HLVM to the MLFA.

Discussion

This methodological demonstration of MLFA to collective efficacy shows that use of either simple aggregation methods, in the form of derived variables, or single-level factor analyses, may not be the best way to construct contextual-level variables from individual-level data. We arrived at this conclusion based on three sets of results. First, we found that ICC values were not the same for every item; some items showed quite high neighborhood-

Table 5 Factor loadings of	f indicators f	or the multi-level ex	cploratory	factor analysis (ML-EFA)

	Within-level		Between-leve
	Factor 1	Factor 2	Factor 1
1this is a close-knit neighborhood	0.618	0.030	0.797
2there are adults that kids look up to	0.642	-0.034	0.833
3people around here are willing to help their neighbors	0.735	0.038	0.935
4people in this neighborhood generally don't get along with each other	0.418	-0.008	0.931
5adults watch out that kids are safe	0.630	0.035	0.972
6people in this neighborhood do not share the same values	0.297	0.015	0.668
7people in this neighborhood can be trusted	0.773	-0.046	0.924
8children were skipping school and hanging out on a street corner	0.121	0.662	0.823
9children were spray-painting graffiti on a local building	0.001	0.711	0.917
10children were showing disrespect to an adult	-0.010	0.723	0.462

 χ^2 = 337.222; df = 61; p-value < 0.00001; CFI = 0.947; RMSEA = 0.059; SRMRwithin = 0.039; SRMRbetween = 0.068. All factor loadings in an EFA are standardized.High EFA loadings appear in bold.

Items 4 and 6 were reverse coded.

	Within-level		Between-level
	Factor 1	Factor 2	Factor 1
1this is a close-knit neighborhood	0.622		0.774
2there are adults that kids look up to	0.631		0.824
3people around here are willing to help their neighbors	0.701		0.857
4people in this neighborhood generally don't get along with each other	0.474		0.828
5adults watch out that kids are safe	0.649		0.819
6people in this neighborhood do not share the same values	0.266		0.807
7people in this neighborhood can be trusted	0.681		0.897
8children were skipping school and hanging out on a street corner		0.724	0.667
9children were spray-painting graffiti on a local building		0.769	0.928
10children were showing disrespect to an adult		0.613	0.353

Table 6 Standardized factor loadings of items for the Multi-Level Confirmatory Factor Analysis (ML-CFA)

 $\chi^2 = 629.816$; df = 69; p-value < 0.00001; RMSEA = 0.079; CFI = 0.903; SRMR_{within} = 0.054; SRMR_{between} = 0.073.

Items 4 and 6 were reverse coded.

level variation and others showed very little. The lack of uniformity in between-neighborhood variation across these items suggests neighborhood context may have differing levels of salience across this set of items and that not all items should be treated equally in terms of their importance to understanding neighborhoods.

Second, the correlation structure of the items was different across the individual (within) and neighborhood (between) levels. Specifically, the correlation among items was much higher at the between level than the within. Moreover, how the items related to each other also differed across levels; some items had high correlations at one level and modest correlations at the other. These findings provided an initial sign that there may be different factor structures at the two levels of analysis.

Third, when we ran the MLFA, we found that the best-fitting model was one that modeled collective efficacy as a two dimensional construct at the within level, consisting of the two latent constructs informal social control and social cohesion, and a one dimensional construct at the between level, consisting of collective efficacy. This two-factor within and one-factor between model was confirmed in the ML-CFA. Imposing an identical factor structure at both levels resulted in a worse-fitting model, particularly when we imposed a set of stricter constraints described in the original paper introducing collective efficacy [9]. While the stricter constraints may be reasonable and could be supported by the data in some cases, there may be instances, such as the case here, where the items were not all equally good indicators of collective efficacy and thus imposing equal factor loadings and equal residual variances constraints was not consistent with the observed data. We also found that the items performed differently in terms of their factor loadings at the within compared to between level. For example, the item "people in this

neighborhood do not share the same values" did not load at the within level, but loaded at the between. Taken together, the results of the current study suggest that collective efficacy, and perhaps other social constructs, can have very different meanings at each level of analysis and are perhaps most appropriately studied at the neighborhood level as one overarching construct and not divided into its two dimensions, informal social control and social cohesion, as has been done in some prior studies (see for example [13,43]).

Our study has the following limitations. The measure of collective efficacy was not identical to the original measure [9]. It is possible our results would have been different had we used a different measure of collective efficacy. The number of neighborhoods in this study (n = 65) was also small relative to other studies. Moreover, our definition of neighborhoods was based on an administrative definition (i.e., Census tract), which may not adequately reflect meaningful geographic boundaries that represent distinct social experiences or cultures [44,45]. Though an imperfect measure to define neighborhoods, Census tracts are most commonly used in multilevel research in the United States [8].

Finally, the MLFA technique is, of course, not without its limitations. For example, it can be computationally intensive. Most software also only allow for two-level structures. In spite of these challenges, results of our analysis underscore the potential utility of MLFA and suggest that using other more easily implemented approaches, such as single-level factor analyses, may not be ideal. As we showed, the MFLA method revealed different latent factor structures at each level of analysis. Our results also demonstrated that imposing a simpler factor structure, with identical factor structures at each level, was not consistent with the data and resulted in a poorer-fitting model.

Results of this study have several important implications for measuring social environments potentially linked to health. Multilevel researchers have lamented the lack of progress in identifying novel measurement tools to characterize contextual-level constructs and as a result have called for new approaches [3-8]. Although more work is needed, results of the current study suggest that MLFA may be a promising method to construct variables from individual-level data for use in multilevel analyses. The MLFA technique allows researchers to use individual-level items to construct measures of the social context using a more flexible approach than other types of hierarchical models. The MLFA approach can also be easily applied with survey data, which remains the most common and cost effective type of data collected. Moreover by using MLFA, researchers establish the measurement model necessary for estimating a multilevel structural equation model (ML-SEM), where direct and indirect effects between latent variables, covariates, and individual items, existing at two or more levels of analysis, are examined [42,46,47]. Although still not widely used in epidemiology or population health, SEM models are an alternative to traditional techniques that can be used for exploratory or hypothesisgenerating purposes [48] or to test more complex relationships between a set of variables [49,50].

In conclusion, our results suggest MLFA is a promising alternative to using derived variables and single-level factor analytic approaches. Future studies are warranted to validate the current results in relation to collective efficacy and extend the MLFA technique to other dimensions of the neighborhood environment as well as other social contexts that influence health.

Additional file

Additional file 1: Technical Appendix for the article: Modeling contextual effects using individual-level data and without aggregation: an illustration of multilevel factor analysis (MLFA) with collective efficacy.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

ECD conceptualized the analytic plan, oversaw the analysis, interpreted results, drafted the manuscript, and approved the final version. KEM helped Dr. Dunn conceptualize the original study design, met regularly to review results, reviewed and edited the early draft of the manuscript, and approved the final version. WRJ carried out the analyses, helped with interpretation of results, edited the early manuscripts, and approved the final version. SVS worked with Dr. Dunn to conceptualize the original study design, reviewed and aided in interpreting early results, and approved the final version. All authors read and approved the final manuscript.

Author details

¹Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, Simches, Room 6.252, Boston, MA 02114, USA. ²Division of Epidemiology and Biostatistics, School of Public Health, Georgia State University, Atlanta, GA 30302, USA. ³Harvard Graduate School of Education, 6 Appian Way, Cambridge, MA 02138, USA. ⁴Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Kresge Building 7th Floor, 716, Boston, Massachusetts 02115, USA.

Received: 21 July 2014 Accepted: 28 March 2015 Published online: 10 May 2015

References

- Pickett KE, Pearl M. Multilevel analyses of neighbourhood socioeconomic context and health outcomes: a critical review. J Epidemiol Community Health. 2001;55:111–22.
- Mair CF, Diez Roux AV, Galea S. Are neighborhood characteristics associated with depressive symptoms? A critical review. J Epidemiol Community Health. 2008;62(11):940–6.
- Diez Roux AV, Auchincloss AH. Understanding the social determinants of behaviours: can new methods help? Int J Drug Policy. 2009;20:227–9.
- Messer LC. Invited commentary: beyond the metrics for measuring neighborhood effects. Am J Epidemiol. 2007;165(8):868–71.
- Diez Roux AV. Next steps in understanding the multilevel determinants of health. J Epidemiol Community Health. 2008;62:957–9.
- Raudenbush SW, Sampson RJ. Ecometrics: toward a science of assessing ecological settings, with application to the systematic social observation of neighborhoods. Sociol Methodol. 1999;29:1–41.
- Mujahid MS, Diez Roux AV, Morenoff JD, Raghunathan T. Assessing the measurement properties of neighborhood scales: from psychometrics to ecometrics. Am J Epidemiol. 2007;165(8):858–67.
- Dunn EC, Masyn KE, Yudron M, Jones SM, Subramanian SV. Translating multilevel theory into multilevel research: challenge and opportunities for understanding the social determinants of psychiatric disorders. Soc Psychiatry Psychiatr Epidemiol. 2014;49:859–72.
- 9. Sampson RJ, Raudenbush S, Earls F. Neighborhoods and violent crime: a multilevel study of collective efficacy. Science. 1997;277:918–24.
- Cohen DA, Finch BK, Bower A, Sastry N. Collective efficacy and obesity: the potential influence of social factors on health. Soc Sci Med. 2006;62:769–78.
- 11. Sampson RJ. Great american city: Chicago and the enduring neighborhood effect. Chicago, IL: University of Chicago Press; 2012.
- Sampson RJ, Morenoff JD, Earls F. Beyond social capital: spatial dynamics of collective efficacy for children. Am Sociol Rev. 1999;64:633–60.
- Sampson RJ. Collective efficacy theory: Lessons learned and directions for future inquiry. In: Cullen FT, Wright JP, Blevins KR, editors. Taking stock: The status of criminological Theory, vol. 15. New Brunswick, NJ: Transaction Publishers; 2008. p. 149–66.
- 14. Ahern J, Galea S. Collective efficacy and major depression in urban neighborhoods. Am J Epidemiol. 2011;173(12):1453–62.
- 15. Diez Roux AV. A glossary for multilevel analysis. J Epidemiol Community Health. 2002;56:588–94.
- Xue Y, Leventhal T, Brooks-Gunn J, Earls FJ. Neighborhood residence and mental health problems of 5- to 11-year olds. Arch Gen Psychiatry. 2005;62:554–63.
- Kim J. Influence of neighbourhood collective efficacy on adolescent sexual behaviour: variation by gender and activity participation. Child Care Health Dev. 2010;36(5):646–54.
- Cagney KA, Glass TA, Skarupski KA, Barnes LL, Schwartz BS, Mendes de Leon CF. Neighborhood-level cohesion and disorder: measurement and validation in two older adult urban populations. J Gerontol B Psychol Sci Soc Sci. 2009;64(3):415–24.
- De Maio FG. Income inequality measures. J Epidemiol Community Health. 2007;61:849–52.
- Longford N, Muthen BO. Factor analysis for clustered observations. Psychometrika. 1992;57:581–97.
- Goldstein H, Browne W. Multilevel factor analysis modelling using Markov Chain Monte Carlo (MCMC) estimation. In: Marcoulides GA, Moustaki M, editors. Latent variable and latent structure models. Mahwah, NJ: Lawrence Erlbaum Associates Inc Publishers; 2002. p. 225–44.
- 22. Muthén BO. Multilevel factor analysis of class and student achievement components. J Educ Meas. 1991;28(4):338–54.
- Muthén B. Latent variable modeling in heterogeneous populations. Psychometrika. 1989;54:557–85.

- 24. Toland MD, De Ayala RJ. A multilevel factor analysis of students' evaluations of teaching. Educ Psychol Meas. 2005;65(2):272–96.
- Reise SP, Ventura J, Neuchterlein KH, Kim KH. An illustration of multilevel factor analysis. J Pers Assess. 2005;84(2):126–36.
- Dyer NG, Hanges PJ, Hall RJ. Applying multilevel confirmatory factor analysis techniques to the study of leadership. Leadersh Q. 2005;16:149–67.
- Dedrick RF, Greenbaum PE. Multilevel confirmatory factor analysis of a scale measuring interagency collaboration of children's mental health agencies. J Emot Behav Disord. 2011;19:27–40.
- Dunn EC, Masyn KE, Jones SM, Subramanian SV, Koenen KC. Measuring psychosocial climates using individual responses: An application of multilevel factor analysis to examining students in schools. Prev Sci. In press.
- Muthén BO. Multilevel covariance structure analysis. Sociol Methods Res. 1994;22:376–98.
- Hox JJ. Multilevel analysis: Techniques and applications. 2nd ed. New York, NY: Routledge; 2010.
- Raudenbush SW. The quantitative assessment of neighborhood social environments. In: Kawachi I, Berkman LF, editors. Neighborhoods and health. New York, NY: Oxford University Press; 2003. p. 112–31.
- Sastry N, Ghosh-Dastidar B, Adams J, Pebley AR. The design of a multilevel survey of children, families, and communities: the Los Angeles Family and Neighborhood Survey. Soc Sci Res. 2006;35(4):1000–24.
- McCullagh P, Nelder JA. Generalized linear models. 2nd ed. Boca Raton, Florida: Chapman & Hall/CRC; 1989.
- Skrondal A, Rabe-Hesketh S. Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models. Boca Raton, Florida: Chapman & Hall/CRC; 2004.
- Flora DB, Curran PJ. An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychol Methods. 2004;9(4):466–91.
- Brown TA. Confirmatory factor analysis for applied research. New York, NY: Guilford Press; 2006.
- 37. Kline P. An easy guide to factor analysis. London, England: Routledge; 1994.
- Muthén LK, Muthén BO. Mplus user's guide. Los Angeles, CA: Muthén & Muthén; 1998. 1998–2010.
- Asparouhov T, Muthén B. Weighted least squares estimation with missing data. 2010; Available from: http://www.statmodel.com/download/ GstrucMissingRevision.pdf.
- Bentler PM. Comparative fit indexes in structural models. Psychol Bull. 1990;107:238–46.
- Steiger JH. Structural model evaluation and modification: an interval estimation approach. Multivar Behav Res. 1990;25:173–80.
- 42. Kline RB. Principles and practice of structural equation modeling. 3rd ed. New York, NY: Guilford Press; 2010.
- Silver E, Miller LL. Sources of informal social control in chicago neighborhoods'. Criminology. 2004;42(3):551–83.
- Merlo J. Invited commentary: multilevel analysis of individual heterogeneitya fundamental critique of the current probabilistic risk factor epidemiology. Am J Epidemiol. 2014;180(2):208–12. discussion 213–4.
- Merlo J. Invited commentary: multilevel analysis of individual heterogeneitya fundamental critique of the current probabilistic risk factor epidemiology. Am J Epidemiol. 2014;80(2):208-12. Discussion 213-204. doi:10.1093/aje/ kwu108.
- Marsh HW, Ludtke O, Robitzsch A, Trautwein U, Asparouhov T, Muthen B, et al. Doubly-latent models of school contextual effects: integrating multilevel and structural equation approaches to control measurement and sampling error. Multivar Behav Res. 2009;44:764–802.
- MacCallum RC, Austin JT. Applications of structural equation modeling in psychological research. Annu Rev Psychol. 2000;51:201–26.
- 48. VanderWeele TJ. Invited commentary: structural equation models and epidemiologic analysis. Am J Epidemiol. 2012;176(7):608–12.
- Arlinghaus A, Lombardi DA, Willetts JL, Folkard S, Christiani DC. A structural equation modeling approach to fatigue-related risk factors for occupational injury. Am J Epidemiol. 2012;176(7):597–607.
- Factor-Litvak P, Sher A. Invited commentary: coming out of the box. Am J Epidemiol. 2009;169(10):1179–81.
- Browning CR, Cagney KA. Neighborhood structural disadvantage, collective efficacy, and self-rated physical health in urban settings. J Health Soc Behav. 2002;43:383–99.

Submit your next manuscript to BioMed Central and take full advantage of:

) Bio Med Central

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

Additional file 1

From the Article: Modeling contextual effects using individual-level data and without aggregation: An illustration of multilevel factor analysis (MLFA) with collective efficacy

Introduction

This appendix is intended to guide readers on the procedures to fit and interpret results from two multilevel factor analytic models: (1) a multilevel exploratory factor analysis (ML-EFA), and (2) multilevel confirmatory factor analysis (ML-CFA). Our illustration uses data analyzed in the paper by <BLIND FOR REVIEW> noted above. We used MPlus version 7 for all analyses (Muthen & Muthen, 1998-2012).

In our analysis, all data manipulation (e.g., recoding variables, etc.) was performed prior to importing the data into MPlus. For ease of implementation, we recommend all data manipulation occur in other programs (e.g., SAS, Stata, SPSS) outside of MPlus. Readers interested in specific data manipulation capabilities should refer to the MPlus manual (Muthen & Muthen, 2012).

It is important to note that in the interest of parsimony, we do not intepret every piece of the input statements or the output. Specifically, we only present the results of the most relevant models from the ML-EFA and ML-CFA, drastically reducing the length of the output. In addition, we assume readers will have some familiarity with MPlus and with factor analytic approaches. Readers interested in learning about factor analysis are referred elsewhere (Bartholomew, 2011; Kline, 2011).

Multilevel Exploratory Factor Analysis (ML-EFA) Syntax

Mplus VERSION 7 MUTHEN & MUTHEN

INPUT INSTRUCTIONS

Title:

EFA for Multi-level Factor Analysis

Data:

File is ML_EFA_CFA_06_27.dat ;

caseid

Variable:

Names are

wgtadlt	wgtpcg
safe	values
skip	graffiti
AB11_1	AB11_2
tractx	sample1
RB1	RB2 1
RB2_6	AJ5

SAMPID N

hhid

trust

AB11 3

ALONG_r

RB2 2

movsince

disrespe

closekni

pid

AB6 8

AB12

VALUES_r

RB2 3

HA18 1

AB8⁻1

adults

Missing are . ;

USEOBSERVATIONS = sample1 == 1;

USEVARIABLES = closekni adults help along r

safe values r trust skip graffiti disrespe;

Prior to importing the data into Mplus, we created a split sample, denoted by the variable "sample1". Specifically, a random 50% of individuals from each cluster were given a value of 1 on this variable and the other 50% a value of 0. The EFA was conducted on one subsample and the CFA with the other. Here we specify in the USEOBSERVATIONS command that only individuals with a value of "1" on sample1 are included.

wgtrsa

CLOSEKNI0

along

AB9

AB14

sex

RB2 5

RSA_TYPE

help

AB6_9

AB8_2

AB13

AGE YR

rb2_4

;

The USEVARIABLES only includes the 10 items involved in the EFA.

CATEGORICAL = closekni adults help along_r
safe values r trust skip graffiti disrespe;

All of the items are 5-point likert scales, so they need to be identified as categorical.

CLUSTER = tractx;

weight = WGTADLT;

CLUSTER refers to the cluster variable (tractx = Census tract ID).

Analysis:

Type = twolevel efa 1 5 uw 1 5 ub;

estimator=wlsmv;

PLOT:

Type = plot2;

Here we are telling Mplus to conduct a multilevel EFA with between 1 and 5 factors at both the within and between levels. Mplus will attempt to model every possible combination of factor structures (e.g., one factor within, one factor between; one factor within, two factors between, etc). The "uw" and "ub" are included to ask for unstructured models with no factors at each level. Since the data are categorical, we use the WLSMV estimator.

OUTPUT:

modindices sampstat svalues;

The plot2 option gives us scree plots for both the within and between levels.

MODINDICES provides information on how the model might be improved if it were to be modified in some way. SAMPSTAT provides sample descriptive statistics. The SVALUES option will output parameter estimates that can be used as start values in subsequent models.

Multilevel Exploratory Factor Analysis (ML-EFA) Results

SUMMARY OF ANALYSIS

Number of groups Number of observations	1 1291				
Number of dependent variables Number of independent variables Number of continuous latent variables					
Observed dependent variables					
Binary and ordered categorical (ordinal) CLOSEKNI ADULTS HELP ALONG_R TRUST SKIP GRAFFITI DISRESPE	SAFE VALUES_R				
Variables with special functions					
Cluster variable TRACTX Weight variable (cluster-size scaling) WGTADLT					
Estimator	WLSMV				
Rotation Row standardization	GEOMIN CORRELATION				
Type of rotation	OBLIQUE				
Epsilon value	Varies				
Optimization Specifications for the Quasi-Newtor	n Algorithm for				
Continuous Outcomes Maximum number of iterations	1000				
Convergence criterion	0.100D-05				
Optimization Specifications for the EM Algorithm Maximum number of iterations Convergence criteria	n 500				
Loglikelihood change	0.100D-02				
Relative loglikelihood change	0.100D-05				
Derivative Optimization Specifications for the M step of th	0.100D-02 ne EM Algorithm for				
Categorical Latent variables					
Number of M step iterations	1				
M step convergence criterion Basis for M step termination	0.100D-02 ITERATION				
Optimization Specifications for the M step of th	ne EM Algorithm for				
Censored, Binary or Ordered Categorical (Ordinal), Unordered				
Categorical (Nominal) and Count Outcomes Number of M step iterations	1				
M step convergence criterion	0.100D-02				
Basis for M step termination	ITERATION				
Maximum value for logit thresholds Minimum value for logit thresholds	10 -10				
Minimum expected cell size for chi-square	0.100D-01				
Maximum number of iterations for H1 Convergence criterion for H1	2000 0.100D-03				
Optimization Specifications for the Exploratory					
Rotation Algorithm					
Number of random starts	30				

Maximum number of iterations Derivative convergence criterion Optimization algorithm Integration Specifications Type Number of integration points Dimensions of numerical integration Adaptive quadrature Link Cholesky	10000 0.100D-04 FS STANDARD 7 2 ON PROBIT ON			
Input data file(s) ML_EFA_CFA_06_27.dat Input data format FREE				
SUMMARY OF DATA			These ICCs represent the between-level variance divided by the total variance for each item.	
Number of clusters Average cluster size 19.862	65		Near-zero ICCs suggest there is minimal between- neighborhood variance on the item.	
Estimated Intraclass Correlation	s for the Y Var	riables		
Intraclass Variable Correlation Variable	Intraclass Correlation	Variabl	Intraclass e Correlation	
CLOSEKNI 0.112 ADULTS ALONG_R 0.148 SAFE TRUST 0.198 SKIP DISRESPE 0.093	0.253 0.112 0.131	HELP VALUES_ GRAFFIT		
COVARIANCE COVERAGE OF DATA				
Minimum covariance coverage value 0	.100		It is useful to compare this output to frequency	

UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

CLOSEKNI	1	0 070	0.0 (1.0
Category		0.070	90.618
Category	2	0.490	632.358
Category	3	0.067	86.594
Category	4	0.310	400.443
Category	5	0.063	80.987
ADULTS			
Category	1	0.090	116.224
Category	2	0.566	730.767
Category	3	0.103	132.685
Category	4	0.220	283.708
Category	5	0.021	27.616
HELP			
Category	1	0.108	139.454
Category	2	0.663	855.474
Category	3	0.062	79.917
Category	4	0.143	184.927
Category		0.024	31.229

It is useful to compare this output to frequency counts from the data file used for initial data management in Stata, SAS or SPSS.

This ensures that the variables were correctly pulled in to Mplus.

ALONG R			
Category	1	0.086	111.102
Category		0.654	843.740
Category		0.084	107.866
Category		0.166	214.884
Category		0.010	13.409
SAFE	-	•••	
Category	1	0.105	135.119
Category		0.638	824.239
Category		0.090	116.625
Category		0.143	184.433
Category		0.024	30.585
VALUES_R			
Category		0.028	36.595
Category		0.427	551.799
Category		0.115	148.123
Category	4	0.397	512.733
Category		0.032	41.750
TRUST			
Category		0.072	92.562
Category		0.597	771.164
Category		0.078	101.265
Category		0.215	277.510
Category	5	0.038	48.499
SKIP			
Category		0.200	258.256
Category		0.407	525.388
Category		0.059	75.551
Category		0.243	313.026
Category	5	0.091	117.535
GRAFFITI			
Category		0.385	496.057
Category		0.367	473.343
Category		0.037	47.379
Category		0.152	196.587
Category	5	0.059	76.389
DISRESPE	1	∩ 1 / 1	181.865
Category		0.141	
Category		0.439	566.717 118.092
Category		0.092 0.230	296.802
Category		0.230	296.802 126.280
Category	Э	0.098	120.200
	_		
SAMPLE STATISTI	ICS		
ESTIMATED	SAMPI	LE STATISTI	CS

Note: Thresholds are one component that is estimated when the models include categorical indicators. In this case, the thresholds correspond to the negative cumulative probit for the ordinal response variable when all factors are zero.

MEANS/INTERCEPTS/THRESHOLDS

	CLOSEKNI	CLOSEKNI	CLOSEKNI	CLOSEKNI	ADULTS\$1
1	-1.555	0.162	0.346	1.636	-1.541

MEANS/INTERCEPTS/THRESHOLDS

	ADULTS\$2	ADULTS\$3	ADULTS\$4	HELP\$1	HELP\$2
1	0.461	0.818	2.341	-1.327	0.805
	MEANS/INTERCEP	TS/THRESHOLDS			
	HELP\$3	HELP\$4	ALONG_R\$	ALONG_R\$	ALONG_R\$
1	1.051	2.134	-1.467	0.714	1.025
	MEANS/INTERCEP	TS/THRESHOLDS			
	ALONG_R\$	SAFE\$1	SAFE\$2	SAFE\$3	SAFE\$4
1	2.507	-1.334	0.688	1.020	2.095
	MEANS/INTERCEP	TS/THRESHOLDS			
	VALUES_R	VALUES_R	VALUES_R	VALUES_R	TRUST\$1
1	-2.080	-0.111	0.210	2.027	-1.609
	MEANS/INTERCEP	TS/THRESHOLDS			
	TRUST\$2	TRUST\$3	TRUST\$4	SKIP\$1	SKIP\$2
1	0.491 MEANS/INTERCEP	0.754 TS/THRESHOLDS	2.016	-0.895	0.296
	SKIP\$3	SKIP\$4	GRAFFITI	GRAFFITI	GRAFFITI
1	0.466	1.443	-0.342	0.816	0.960
	MEANS/INTERCEP	TS/THRESHOLDS			
	GRAFFITI	DISRESPE	DISRESPE	DISRESPE	DISRESPE
1	1.847	-1.123	0.213	0.470	1.366

These values represent the sample variances and covariances across individuals, within neighborhoods. High values indicate greater levels of shared variance among the items.

WITHIN LEVEL VARIANCE/COVARIANCE

	CLOSEKNI	ADULTS	HELP	ALONG_R	SAFE
CLOSEKNI	1.000				
ADULTS	0.439	1.000			
HELP	0.523	0.465	1.000		
ALONG R	0.202	0.272	0.319	1.000	
SAFE	0.400	0.359	0.476	0.248	1.000
VALUES R	0.113	0.108	0.181	0.304	0.157
TRUST -	0.423	0.463	0.545	0.290	0.542
SKIP	0.298	0.286	0.404	0.192	0.278
GRAFFITI	0.221	0.210	0.270	0.157	0.324
DISRESPE	0.268	0.199	0.287	0.144	0.247

	WITHIN LEVEL VALUES_R	VARIANCE/COVAN TRUST	RIANCE SKIP	GRAFFITI	DISRESPE
VALUES_R TRUST SKIP GRAFFITI DISRESPE	1.000 0.242 0.063 0.144 0.123	1.000 0.344 0.224 0.260	1.000 0.515 0.521	1.000 0.510	1.000

	WITHIN LEVEL CORRELATION		These values represent the standardized variance/covariance matrix at the individual leve.		
	CLOSEKNI	ADULTS	HELP	ALONG_R	SAFE
CLOSEKNI	1.000				
ADULTS	0.439	1.000			
HELP	0.523	0.465	1.000		
ALONG R	0.202	0.272	0.319	1.000	
SAFE	0.400	0.359	0.476	0.248	1.000
VALUES R	0.113	0.108	0.181	0.304	0.157
TRUST -	0.423	0.463	0.545	0.290	0.542
SKIP	0.298	0.286	0.404	0.192	0.278
GRAFFITI	0.221	0.210	0.270	0.157	0.324
DISRESPE	0.268	0.199	0.287	0.144	0.247

WITHIN LEVEL CORRELATION

	VALUES_R	TRUST	SKIP	GRAFFITI	DISRESPE
VALUES_R TRUST SKIP GRAFFITI	1.000 0.242 0.063 0.144	1.000 0.344 0.224	1.000 0.515	1.000	
DISRESPE	0.123	0.260	0.521	0.510	1.000

These values represent the sample variances and covariances at the neighborhood level. High values indicate greater levels of shared variance among the items. It is important to note that these values differ than those found in the within level variance/covariance matrix.

BETWEEN LEVEL VARIANCE/COVARIANCE

	CLOSEKNI	ADULTS	HELP	ALONG_R	SAFE
CLOSEKNI	0.126				
ADULTS	0.161	0.339			
HELP	0.121	0.203	0.166		
ALONG R	0.094	0.205	0.145	0.174	
SAFE _	0.097	0.173	0.133	0.126	0.126
VALUES R	0.080	0.142	0.097	0.139	0.105
TRUST -	0.126	0.233	0.168	0.183	0.165
SKIP	0.090	0.129	0.123	0.117	0.116
GRAFFITI	0.153	0.297	0.226	0.240	0.209
DISRESPE	0.058	0.036	0.063	0.062	0.039

BETWEEN LEVEL VARIANCE/COVARIANCE

	VALUES_R	TRUST	SKIP	GRAFFITI	DISRESPE
VALUES_R	0.210				
TRUST	0.135	0.247			
SKIP	0.113	0.144	0.151		
GRAFFITI	0.213	0.278	0.177	0.426	
DISRESPE	0.039	0.065	0.077	0.089	0.102

These values represent the standardardized variance/covariance matrix at the neighborhood level.

BETWEEN LEVEL CORRELATION

	CLOSEKNI	ADULTS	HELP	ALONG_R	SAFE
CLOSEKNI	1.000				
ADULTS	0.779	1.000			
HELP	0.837	0.858	1.000		
ALONG R	0.638	0.844	0.858	1.000	
SAFE	0.773	0.837	0.920	0.854	1.000
VALUES R	0.493	0.533	0.520	0.730	0.644
TRUST -	0.716	0.807	0.829	0.884	0.934
SKIP	0.650	0.569	0.775	0.725	0.841
GRAFFITI	0.660	0.781	0.849	0.882	0.903
DISRESPE	0.516	0.196	0.482	0.469	0.341

BETWEEN LEVEL CORRELATION

	VALUES_R	TRUST	SKIP	GRAFFITI	DISRESPE
VALUES_R	1.000				
TRUST	0.593	1.000			
SKIP	0.634	0.745	1.000		
GRAFFITI	0.711	0.857	0.698	1.000	
DISRESPE	0.267	0.408	0.622	0.426	1.000

Given that MPlus calculates all possible factor combinations, error messages commonly appear here. An example of one such error message is shown below. These error messages signal that some of the models (particularly those with 4 or more factors at either level) could not be estimated. This is likely due to insufficient variance in the items to warrant a 4+ factor structure.

STANDARD ERRORS COULD NOT BE COMPUTED. PROBLEM OCCURRED IN EXPLORATORY FACTOR ANALYSIS WITH 4 WITHIN FACTOR(S) AND 1 BETWEEN FACTOR(S).

THIS PROBLEM IS MOST LIKELY CAUSED BY THE RESIDUAL VARIANCE OF SAFE ON THE WITHIN LEVEL CONVERGING TO ZERO.

CHI-SQUARE TEST COULD NOT BE COMPUTED. PROBLEM OCCURRED IN EXPLORATORY FACTOR ANALYSIS WITH 4 WITHIN FACTOR(S) AND 1 BETWEEN FACTOR(S).

•

.

Note: Some of the Mplus output has been eliminated to shorten the document and improve the ease of use.

EXPLORATO	RY FACTOR ANALYSIS WITH 1 WI	THIN FACTOR(S) A	AND 1 E	BETWEEN FACTOR(S):
MODEL FIT	INFORMATION			se are the results of the EFA with thin factor and 1 between factor.
Number of	Free Parameters	70		statistics and factor loadings
Chi-Squar	e Test of Model Fit			provided separately for each for configuration. As shown
	Value Degrees of Freedom P-Value	1388.598* 70 0.0000		w, factor loadings are provided each level.
for c chi-s	hi-square value for MLM, MLM hi-square difference testing quare difference testing is LSMV difference testing is d	NV, MLR, ULSMV, N in the regular described on the	way. e Mplus	MLM, MLR and WLSM s website. MLMV, WLSMV,
RMSEA (Ro	ot Mean Square Error Of Appr	coximation)	[RMSEA summarizes the extent to
	Estimate 90 Percent C.I. Probability RMSEA <= .05	0.121 0.115 0.000	0.126	which the model is a good approximation of the observed data. Values below 0.05 indicate close fit. Values above 0.10 indicate poor fit.
CFI/TLI				-
	CFI TLI	0.749 0.677		
Chi-Squar	e Test of Model Fit for the	Baseline Model		CFI and TLI are measures of model They have a range from 0 to 1,
	Value Degrees of Freedom P-Value	5338.537 90 0.0000		higher values indicating better
SRMR (Sta	ndardized Root Mean Square F	Residual)		SRMR is the only value provided arately at the within- and
MTNITMIM D	Value for Within Value for Between OTATION FUNCTION VALUE	0.084 0.068 3.36977	betw the corr Valu acce	ween-level. The SRMR summarizes mean absolute value of the celation residuals for each level. tes below 0.10 are generally eptable, although values smaller 0.05 are preferred.
MINIMOM R	OTATION FUNCTION VALUE	5.30977	ciidi	i oros are preferrea.
				Kline (2001) for more information .nterpretation of fit indices.
WITHIN LE	VEL RESULTS	Mpl	lus pre	esents within-level results first.
	GEOMIN ROTATED LOADINGS (* 1	significant at	5% lev	zel)
CLOSEKNI ADULTS HELP ALONG_R SAFE VALUES_R TRUST SKIP GRAFFITI DISRESPE	0.572* 0.725* 0.396* 0.632* 0.274* 0.699* 0.630* 0.583*	comb: a fac	ination ctor.	ings represent the linear n of variables that make-up Loadings for EFA are in eviation units.

GEOMIN FACTOR CORRELATIONS (* significant at 5% level) 1

1	1.000 ESTIMATED RESIDUA	I WADTANCES	variar accour the EB	esidual variances nces of the items nting for all of FA model. Thus, ntage of variance	s after the variance in they are the
	CLOSEKNI	ADULTS	HELP	ALONG R	SAFE
1	0.620	0.672	0.474	0.843	0.601

	ESTIMATED RESIDUAI VALUES_R	VARIANCES TRUST	SKIP	GRAFFITI	DISRESPE
1	0.925	0.512	0.603	0.660	0.721

S.E.	GEOMIN	ROTATED	LOADINGS	
	1			

0.016
0.017
0.011
0.021
0.016
0.022
0.015
0.017
0.018
0.015

S.E.	GEOMIN	FACTOR	CORRELATIONS
	1		

1 0.000

	S.E. ESTIMATED R CLOSEKNI	ESIDUAL VARIA ADULTS	ANCES HELP	ALONG_R	SAFE
1	0.020	0.020	0.015	0.017	0.021
	S.E. ESTIMATED F VALUES R	ESIDUAL VARIA	ANCES	GRAFFITI	DISRESPE
1	0.012	0.020	0.022	0.021	0.016

Est./S.E. GEOMIN ROTATED LOADINGS

1

CLOSEKNI	38.837
ADULTS	33.555
HELP	68.791
ALONG_R	18.995
SAFE	38.548
VALUES_R	12.591
TRUST	47.865
SKIP	36.681
GRAFFITI	32.806
DISRESPE	35.726

Est./S.E. GEOMIN FACTOR CORRELATIONS 1

0.000 1

	Est./S.E. ESTIN	ATED RESIDUAL	VARIANCES		
	CLOSEKNI	ADULTS	HELP	ALONG_R	SAFE
1	31.699	34.414	30.953	51.059	29.020

	Est./S.E. ESTIMA	TED RESIDUAL	VARIANCES		
	VALUES_R	TRUST	SKIP	GRAFFITI	DISRESPE
1	77.391	25.091	27.912	31.803	46.241

EXPLORATORY FACTOR ANALYSIS WITH 1 WITHIN FACTOR(S) AND 1 BETWEEN FACTOR(S):

MINIMUM ROTATION FUNCTION VALUE 7.04738

BETWEEN LEVEL RESULTS

Here is the beginning of the between-level results for the model with 1 factor at each level.

GEOMIN ROTATED LOADINGS (* significant at 5% level) 1

CLOSEKNI	0.797*
ADULTS	0.833*
HELP	0.935*
ALONG_R	0.931*
SAFE	0.972*
VALUES_R	0.668*
TRUST	0.924*
SKIP	0.823*
GRAFFITI	0.917*
DISRESPE	0.462*

GEOMIN FACTOR CORRELATIONS (* significant at 5% level) $1 \label{eq:geometry}$

1 1.000

	ESTIMATED RESID CLOSEKNI	UAL VARIANCES ADULTS	HELP	ALONG_R	SAFE
1	0.365	0.305	0.127	0.133	0.056
	ESTIMATED RESID VALUES_R	UAL VARIANCES TRUST	SKIP	GRAFFITI	DISRESPE
1	0.554	0.147	0.322	0.160	0.786

S.E. GEOMIN ROTATED LOADINGS

1

CLOSEKNI	0.072
ADULTS	0.059
HELP	0.043
ALONG_R	0.041
SAFE	0.036
VALUES_R	0.085
TRUST	0.035
SKIP	0.070
GRAFFITI	0.035
DISRESPE	0.125

S.E. GEOMIN FACTOR CORRELATIONS

1 0.000

	S.E. ESTIMATED	RESIDUAL VARI	ANCES		
	CLOSEKNI	ADULTS	HELP	ALONG_R	SAFE
1	0.114	0.098	0.080	0.077	0.070

S.E. ESTIMATED RESIDUAL VARIANCES VALUES_R TRUST SKIP GRAFFITI DISRESPE 1 0.114 0.065 0.115 0.064 0.116

Est./S.E. GEOMIN ROTATED LOADINGS

CLOSEKNI	11.119
ADULTS	14.142
HELP	21.892
ALONG_R	22.481
SAFE	26.882
VALUES_R	7.836
TRUST	26.128
SKIP	11.775
GRAFFITI	26.116
DISRESPE	3.695

1

Est./S.E. GEOMIN FACTOR CORRELATIONS 1

1 0.000

	Est./S.E. ESTIM CLOSEKNI	ATED RESIDUAL ADULTS	VARIANCES HELP	ALONG_R	SAFE
1	3.197	3.108	1.586	1.723	0.791
	Est./S.E. ESTIM VALUES_R	ATED RESIDUAL TRUST	VARIANCES SKIP	GRAFFITI	DISRESPE
1	4.860	2.246	2.796	2.480	6.795

MODEL FIT INFORMATION		
Number of Free Parameters	79	This is the beginning of the results for a model with 2 within factors and 1 between factor. This solution is presented as our final
Chi-Square Test of Model Fit		
Value Degrees of Freedom P-Value	337.222* 61 0.0000	EFA model, and these results are presented in the paper in Table 4 of the paper.
P-value	0.0000	

* The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference testing in the regular way. MLM, MLR and WLSM chi-square difference testing is described on the Mplus website. MLMV, WLSMV, and ULSMV difference testing is done using the DIFFTEST option.

RMSEA (Root Mean Square Error Of Approximation)

Estimate	0.059	
90 Percent C.I.	0.053	0.065
Probability RMSEA <= .05	0.007	

CFI/TLI

CFI	0.947
TLI	0.922

Chi-Square Test of Model Fit for the Baseline Model

Value			5338.537
Degrees	of	Freedom	90
P-Value			0.0000

SRMR (Standardized Root Mean Square Residual)

Value	for	Within	0.039
Value	for	Between	0.068

MINIMUM ROTATION FUNCTION VALUE 0.23948

1 2

WITHIN LEVEL RESULTS

GEOMIN ROTATED LOADINGS (* significant at 5% level)

0.618*	0.030
0.642*	-0.034
0.735*	0.038
0.418*	-0.008
0.630*	0.035
0.297*	-0.015
0.773*	-0.046
0.121*	0.662*
0.001	0.711*
-0.010	0.723*
	0.642* 0.735* 0.418* 0.630* 0.297* 0.773* 0.121* 0.001

These factor loadings suggest a
configuration where the first 7 items load
on Factor 1 and the 3 remaining items load
on Factor 2. As described in the paper,
this solution is consistent with prior
research on collective efficacy.

The fit indices show improvement from the initial model (1 within factor 1 between factor).

	GEOMIN FACTOR C 1	CORRELATIONS (* 2	significant	at 5% level)	
1 2	1.000 0.521*	1.000		lation between tors is 0.521.	the two within-
	ESTIMATED RESIL CLOSEKNI	DUAL VARIANCES ADULTS	HELP	ALONG_R	SAFE
1	0.598	0.610	0.429	0.829	0.578
	ESTIMATED RESIL		QUIT	CDARRENT	DIODEODE
	VALUES_R	TRUST	SKIP	GRAFFITI	DISRESPE
1	0.916	0.438	0.464	0.494	0.485
	S.E. GEOMIN ROI 1	ATED LOADINGS			
CLOSEKNI	0.027	0.038			
ADULTS	0.027	0.037			
HELP	0.028	0.044			
ALONG_R	0.024	0.018			
SAFE	0.025	0.039			
VALUES_R TRUST	0.031	0.040			
SKIP	0.030 0.032	0.044 0.027			
GRAFFITI		0.018			
DISRESPE	0.026	0.025			
	S.E. GEOMIN FAC 1	TOR CORRELATION	S		
1	0.000				
2	0.036	0.000			
		RESIDUAL VARIAN			
	CLOSEKNI	ADULTS	HELP	ALONG_R	SAFE
1	0.021	0.023	0.016	0.018	0.020
	S.E. ESTIMATED	RESIDUAL VARIAN	CES		
	VALUES_R	TRUST	SKIP	GRAFFITI	DISRESPE
1	0.013	0.024	0.025	0.024	0.023

(* significant at 5% lovol)

Est./S.E. GEOMIN ROTATED LOADINGS 1 2

	1	2
CLOSEKNI ADULTS	22.626	0.783
HELP	26.480	0.867
ALONG_R SAFE	17.676 25.602	-0.463 0.916
VALUES_R	9.492	-0.378
TRUST SKIP	25.711 3.850	-1.056 24.602
GRAFFITI DISRESPE	0.076 -0.364	40.248 29.407

Est./S.E. GEOMIN FACTOR CORRELATIONS 1 2 _____

1	0.000	
2	14.299	0.000

	Est./S.E. ESTI	MATED RESIDUAL	VARIANCES		
	CLOSEKNI	ADULTS	HELP	ALONG_R	SAFE
1	28.964	26.679	26.112	47.234	29.108
	Est./S.E. ESTIN VALUES_R	MATED RESIDUAI TRUST	VARIANCES SKIP	GRAFFITI	DISRESPE
1	72.645	18.625	18.433	20.985	21.147

FACTOR STRUCTURE 1 2

T	Ζ.
0.634	0.352
0.624	0.300
0.755	0.421
0.414	0.209
0.649	0.363
0.290	0.140
0.748	0.356
0.466	0.725
0.371	0.711
0.367	0.718
	0.624 0.755 0.414 0.649 0.290 0.748 0.466 0.371

EXPLORATORY FACTOR ANALYSIS WITH 2 WITHIN FACTOR(S) AND 1 BETWEEN FACTOR(S):

MINIMUM ROTATION FUNCTION VALUE 7.04741

BETWEEN LEVEL RESULTS

	GEOMIN ROTATED LOA 1	DINGS (* significant at 5% level)
CLOSEKNI	0.797*	
ADULTS	0.833*	
HELP	0.935*	The between-level factor loadings remain
ALONG_R	0.931*	the same as the previous 1 factor between
SAFE	0.972*	model (as expected).
VALUES_R	0.668*	model (db expected).
TRUST	0.924*	
SKIP	0.823*	
GRAFFITI	0.917*	
DISRESPE	0.462*	

	GEOMIN	FACTOR	CORRELATIONS	(*	significant	at	5%	level)	
		1							
1	1	.000							

	ESTIMATED RESIDUA CLOSEKNI	AL VARIANCES ADULTS	HELP	ALONG_R	SAFE
1	0.365	0.305	0.127	0.133	0.056
	ESTIMATED RESIDUA	AL VARIANCES			
	VALUES_R	TRUST	SKIP	GRAFFITI	DISRESPE
1	0.554	0.147	0.322	0.160	0.786

S.E. GEOMIN ROTATED LOADINGS

1

CLOSEKNI	0.072
ADULTS	0.059
HELP	0.043
ALONG_R	0.041
SAFE	0.036
VALUES_R	0.085
TRUST	0.035
SKIP	0.070
GRAFFITI	0.035
DISRESPE	0.125

S.E. GEOMIN FACTOR CORRELATIONS

1

1 0.000

	S.E. ESTIMATED CLOSEKNI	RESIDUAL VARI ADULTS	ANCES HELP	ALONG_R	SAFE
1	0.114	0.098	0.080	0.077	0.070
	S.E. ESTIMATED VALUES_R	RESIDUAL VARI TRUST	ANCES SKIP	GRAFFITI	DISRESPE
1	0.114	0.065	0.115	0.064	0.116

Est./S.E. GEOMIN ROTATED LOADINGS 1

CLOSEKNI	11.119
ADULTS	14.142
HELP	21.892
ALONG_R	22.481
SAFE	26.882
VALUES_R	7.836
TRUST	26.130
SKIP	11.775
GRAFFITI	26.116
DISRESPE	3.695

Est./S.E. GEOMIN FACTOR CORRELATIONS 1

1 0.000

•

•

•

	Est./S.E. ESTIM CLOSEKNI	ATED RESIDUAL ADULTS	VARIANCES HELP	ALONG_R	SAFE
1	3.197	3.108	1.586	1.723	0.791
	Est./S.E. ESTIM VALUES_R	ATED RESIDUAL TRUST	VARIANCES SKIP	GRAFFITI	DISRESPE
1	4.860	2.246	2.796	2.480	6.795

Some of the Mplus output has been eliminated to shorten the document and improve the ease of use.

MODEL FIT	INFORMATION		
Number of	Free Parameters	88	This is the beginning of the results for a model with 2 within factors and 2 between factors.
Chi-Square	e Test of Model Fit		
	Value	331.008*	
	Degrees of Freedom	52	
	P-Value	0.0000	

The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference testing in the regular way. $\ensuremath{\operatorname{MLM}}$, $\ensuremath{\operatorname{MLR}}$ and $\ensuremath{\operatorname{WLSM}}$ chi-square difference testing is described on the Mplus website. MLMV, WLSMV, and ULSMV difference testing is done using the DIFFTEST option.

RMSEA (Root Mean Square Error Of Approximation)

Estimate	0.064	
90 Percent C.I.	0.058	0.071
Probability RMSEA <= .05	0.000	

CFI/TLI

CFI	0.947
TLI	0.908

Chi-Square Test of Model Fit for the Baseline Model

Value	5338.537
Degrees of Freedom	90
P-Value	0.0000

SRMR (Standardized Root Mean Square Residual)

Value	for	Within	0.039
Value	for	Between	0.045

MINIMUM ROTATION FUNCTION VALUE 0.23948

WITHIN LEVEL RESULTS

GEOMIN ROTATED LOADINGS (* significant at 5% level)

2

CLOSEKNI	0.618*	0.030
ADULTS	0.642*	-0.034
HELP	0.735*	0.038
ALONG_R	0.418*	-0.008
SAFE	0.630*	0.035
VALUES_R	0.297*	-0.015
TRUST	0.773*	-0.046
SKIP	0.121*	0.662*
GRAFFITI	0.001	0.711*
DISRESPE	-0.010	0.723*

1

The within-level factor loadings are identical to the within-level estimates from other models with 2 within factors, as expected.

Model fit improves from the 2 within and 1 between model to the 2 within and 2 between model, but this is to be expected due to increase in the number of freed parameters.

Thus, it is also important to examine factor loadings for interpretability when comparing models.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
CLOSEKNI ADULTS HELP ALONG_R SAFE 1 0.598 0.610 0.429 0.829 0.578 ESTIMATED RESIDUAL VARIANCES VALUES_R TRUST SKIP GRAFFITI DISRESS	
ESTIMATED RESIDUAL VARIANCES VALUES_R TRUST SKIP GRAFFITI DISRESE	
VALUES_R TRUST SKIP GRAFFITI DISRESE	
1 0.916 0.438 0.464 0.494 0.485	PE
S.E. GEOMIN ROTATED LOADINGS 1 2	
CLOSEKNI 0.027 0.038 ADULTS 0.027 0.037	
HELP 0.028 0.044	
ALONG_R 0.024 0.018 SAFE 0.025 0.039	
VALUES_R 0.031 0.040	
TRUST 0.030 0.044 SKIP 0.032 0.027	
GRAFFITI 0.011 0.018	
DISRESPE 0.026 0.025	
S.E. GEOMIN FACTOR CORRELATIONS 1 2	
1 0.000	
2 0.036 0.000	
S.E. ESTIMATED RESIDUAL VARIANCES	
CLOSEKNI ADULTS HELP ALONG_R SAFE	
1 0.021 0.023 0.016 0.018 0.020	
S.E. ESTIMATED RESIDUAL VARIANCES VALUES_R TRUST SKIP GRAFFITI DISRESPE	£
1 0.013 0.024 0.025 0.024 0.023	

Est./S.E. GEOMIN ROTATED LOADINGS

	1	2
CLOSEKNI	22.626	0.783
ADULTS	24.106	-0.932
HELP	26.480	0.867
ALONG_R	17.676	-0.463
SAFE	25.602	0.916
VALUES_R	9.492	-0.378
TRUST	25.711	-1.056
SKIP	3.850	24.602
GRAFFITI	0.076	40.248
DISRESPE	-0.364	29.407

Est./S.E. GEOMIN FACTOR CORRELATIONS 1 2 ------

1	0.000	
2	14.299	0.000

	Est./S.E. ESTI	MATED RESIDUAL	VARIANCES		
	CLOSEKNI	ADULTS	HELP	ALONG_R	SAFE
1	28.964	26.679	26.112	47.234	29.108
	Est./S.E. ESTIN VALUES_R	MATED RESIDUAL TRUST	VARIANCES SKIP	GRAFFITI	DISRESPE
1	72.645	18.625	18.433	20.984	21.147

FACTOR STRUCTURE 1 2

	T	2
CLOSEKNI	0.634	0.352
ADULTS	0.624	0.300
HELP	0.755	0.421
ALONG R	0.414	0.209
SAFE	0.649	0.363
VALUES R	0.290	0.140
TRUST	0.748	0.356
SKIP	0.466	0.725
GRAFFITI	0.371	0.711
DISRESPE	0.367	0.718

EXPLORATORY FACTOR ANALYSIS WITH 2 WITHIN FACTOR(S) AND 2 BETWEEN FACTOR(S):

MINIMUM ROTATION FUNCTION VALUE 0.44136

BETWEEN LEVEL RESULTS

GEOMIN ROTATED LOADINGS (* significant at 5% level) 1 2

CLOSEKNI	0.762*	0.085
ADULTS	0.889*	-0.110
HELP	0.920*	0.033
ALONG_R	0.921*	0.022
SAFE	0.998*	-0.058
VALUES_R	0.676*	-0.019
TRUST	0.928*	-0.009
SKIP	0.771*	0.142
GRAFFITI	0.916*	0.001
DISRESPE	0.000	1.926

The between-level factor loadings show that the first nine items load on the first factor, while only one item loads on the second factor (though this loading is not significant).

	GEOMIN	FACTOR	CORRELATION	S (*	significant	at	5%	level)
		1	2					
1	1.	.000						
2	Ο.	.238*	1.000					

	ESTIMATED RESID	UAL VARIANCES			
	CLOSEKNI	ADULTS	HELP	ALONG_R	SAFE
1	0.381	0.245	0.138	0.141	0.028
	ESTIMATED RESIL VALUES R	UAL VARIANCES TRUST	SKIP	GRAFFITI	DISRESPE
1	0.549	0.143	0.334	0.160	-2.709

S.E. GEOMIN ROTATED LOADINGS 1 2

CLOSEKNI	0.104	0.184
ADULTS	0.090	0.186
HELP	0.051	0.105
ALONG_R	0.047	0.080
SAFE	0.061	0.116
VALUES_R	0.086	0.086
TRUST	0.032	0.052
SKIP	0.147	0.267
GRAFFITI	0.038	0.026
DISRESPE	0.001	2.860

S.E.	GEOMIN FACTOR CO 1	RRELATIONS 2						
1 2	0.000 0.356	0.000						
2	0.330	0.000						
	S.E. ESTIMATED RESIDUAL VARIANCES							
	CLOSEKNI	ADULTS	HELP	ALONG_R	SAFE			
1	0.118	0.085	0.074	0.072	0.074			
	S.E. ESTIMATED R VALUES_R	ESIDUAL VARIA TRUST	NCES SKIP	GRAFFITI	DISRESPE			
1	0.113	0.059	0.116	0.065	11.013			
	Est./S.E. GEOMIN ROTATED LOADINGS							
CLOSEKNI	7.313	0.461						
ADULTS	9.823	-0.593						
HELP	17.996	0.314						
ALONG_R	19.786	0.271						
SAFE	16.365	-0.497						
VALUES_R	7.853	-0.218						
TRUST	28.857	-0.181						
SKIP	5.233	0.531						
GRAFFITI	24.340	0.051						
DISRESPE	0.168	0.673						
	Est./S.E. GEOMIN FACTOR CORRELATIONS							
	I	Ζ.						
1	0.000							
2	0.668	0.000						
Est./S.E. ESTIMATED RESIDUAL VARIANCES								
	CLOSEKNI	ADULTS	HELP	ALONG_R	SAFE			
1	3.227	2.879	1.876	1.947	0.375			
Est./S.E. ESTIMATED RESIDUAL VARIANCES								
	VALUES_R	TRUST	SKIP	GRAFFITI	DISRESPE			
1	4.840	2.432	2.881	2.445	-0.246			

FACTOR STRUCTURE

FACTOR STRUCTUF	RΕ	
	1	2
CLOSEKNI	0.783	0.266
ADULTS	0.863	0.101
HELP	0.928	0.252
ALONG_R	0.927	0.241
SAFE	0.984	0.179
VALUES_R	0.671	0.142
TRUST	0.926	0.211
SKIP	0.804	0.325
GRAFFITI	0.917	0.219
DISRESPE	0.458	1.926

Multilevel Confirmatory Factor Analysis (ML-CFA) Syntax

```
Mplus VERSION 7
MUTHEN & MUTHEN
INPUT INSTRUCTIONS
 Title:
 CFA SPECIFYING 2 FACTORS WITHIN AND 1 BETWEEN
 Data:
      File is ML EFA CFA 06 27.dat ;
 Variable:
      Names arecaseidSAMPID_NhhidpidwgtadltwgtpcgclosekniadultshelpsafevaluestrustAB6_8AB6_9skipgraffitidisrespeAB8_1AB8_2
                                                                    RSA_TYPE
                                                                                  wgtrs
                                                                     along
                                                                    CLOSEKNI0
                  graffiti disrespe AB8_1
AB11_2 AB11_3 AB12
                                                                     AB9
        AB11 1
                                                        AB13
                                                                     AB14
                                            VALUES r
        tractx
                   sample1
                               ALONG r
                                                        AGE YR
                                                                     sex
                               RB2_2 RB2_3
        RB1
                   RB2 1
                                                        RB2 4
                                                                     RB2 5
        RB2 6
                                movsince HA18 1
                   AJ5
                                                         ;
       Missing are . ;
 USEOBSERVATIONS = sample1 == 0;
                                                         Here we are using the
                                                         other half of the split
 USEVARIABLES = closekni adults help along r
                                                         sample for the CFA.
  safe values r trust skip graffiti disrespe;
 CATEGORICAL = closekni adults help along r
                                                       CLUSTER refers to the cluster
 safe values r trust skip graffiti disrespe;
                                                       variable (tractx = Census tract
                                                       ID).
 CLUSTER = tractx;
 WEIGHT = WGTADLT;
                                 Type = twolevel specifies a multilevel model where
                                 the within-level and between-level
 Analysis:
                                 variance/covariance matrices are separately analyzed.
                                      As noted in the EFA, we are using the
 Type = twolevel;
                                      WLSMV estimator because we are analyzing
                                      data from categorical indicators.
 ESTIMATOR=WLSMV;
                                          Based on the results of the EFA, we
 Model:
                                          estimate a 2-factor structure at the within
                                          level, corresponding to "social cohesion"
                                          and "informal social control."
  %within%
                                          Although not shown here, start values may
    cohesion by closekni;
                                          be needed if the model does not run in a
    cohesion by adults;
                                          reasonable amount of time. Within level
    cohesion by help;
                                          starting values can come from a single-
    cohesion by along r;
    cohesion by safe;
                                          level CFA, where the factor analysis is
                                          conducted at only one level and the
    cohesion by values r;
                                          clustering of observations is accounted for
    cohesion by trust;
                                          through the TYPE=complex command.
                                          For each factor, one loading must be fixed
                                          at 1 to allow for model identification.
    control by skip;
                                          Here, the first factor loading is fixed to
                                          1 as the default in Mplus.
```

control by graffiti; control by disrespe;

cohesion WITH control;

cohesion; control;

%between%

col_eff by closekni adults help along_r
safe values_r trust skip graffiti disrespe;

OUTPUT:

sampstat STDYX Residual;

SAVEDATA:

swmatrix is cfa_swmatrix.dat;

Factor variances and covariances are freely estimated at the within level. This is apparent by the lack of constraints imposed on these models.

Based on the results of the EFA, we are estimating a 1-factor structure at the between level.

Although not shown, starting values can be provided to expedite processing. Start values can be obtained by including SVALUES in the output statement. Between level start values can come from the factor loadings obtained from a multi-level EFA with 1 factor loading on the between-level.

The savedata command asks Mplus to create swmatrix file containing the sample statistics at the within and between levels for the CFA sample. This is useful in reducing computing time in subsequent models using the same sample.

Multilevel Confirmatory Factor Analysis (ML-CFA) Results

	This is the beginning of the output for our CFA model that is
SUMMARY OF ANALYSIS	presented in Table 5.
Number of groups Number of observations	1 1303
Number of dependent variables	10
Number of independent variables Number of continuous latent variables	0 3
Observed dependent variables	
Binary and ordered categorical (ordinal) CLOSEKNI ADULTS HELP ALONG_R SA TRUST SKIP GRAFFITI DISRESPE	FE VALUES_R
Continuous latent variables COHESION CONTROL COL_EFF	
Variables with special functions	
Cluster variable TRACTX Weight variable (cluster-size scaling) WGTADLT	
Estimator	WLSMV
Optimization Specifications for the Quasi-Newton Algo	rithm for
Continuous Outcomes Maximum number of iterations	1000
Convergence criterion	0.100D-05
Optimization Specifications for the EM Algorithm Maximum number of iterations	500
Convergence criteria	0.100D-02
Loglikelihood change Relative loglikelihood change	0.100D-02
Derivative	0.100D-02
Optimization Specifications for the M step of the EM . Categorical Latent variables	-
Number of M step iterations	1
M step convergence criterion Basis for M step termination	0.100D-02 ITERATION
Optimization Specifications for the M step of the EM .	
Censored, Binary or Ordered Categorical (Ordinal), Un Categorical (Nominal) and Count Outcomes	
Number of M step iterations	1
M step convergence criterion	0.100D-02
Basis for M step termination	ITERATION
Maximum value for logit thresholds Minimum value for logit thresholds	10 -10
Minimum value for logic thresholds Minimum expected cell size for chi-square	0.100D-01
Maximum number of iterations for H1	2000
Convergence criterion for H1	0.100D-03
Optimization algorithm	FS
Integration Specifications	STANDARD
Type Number of integration points	STANDARD 7
Dimensions of numerical integration	2
Adaptive quadrature	ON
Link	PROBIT
Cholesky	ON

Input data file(s)
 ML_EFA_CFA_06_27.dat
Input data format FREE

Number of clusters

SUMMARY OF DATA

65

Average cluster size 20.046

Estimated Intraclass Correlations for the Y Variables

These ICCs represent the between-level variance divided by the total variance for each item. Near-zero ICCs suggest minimal neighborhood-based associations.

	Intraclass		Intraclass		Intraclass
Variable	Correlation	Variable	Correlation	Variable	Correlation
CLOSEKNI	0.121	ADULTS	0.216	HELP	0.174
ALONG_R	0.178	SAFE	0.089	VALUES_R	0.114
TRUST	0.254	SKIP	0.125	GRAFFITI	0.273
DISRESPE	0.090				

COVARIANCE COVERAGE OF DATA

Minimum covariance coverage value 0.100

UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

CLOSEKNI			
Category	1	0.063	82.257
Category		0.456	594.495
Category	3	0.059	76.525
Category		0.378	492.565
Category		0.044	57.158
ADULTS	5	0.044	J/.1J0
Category	1	0.065	84.773
Category		0.542	706.162
Category		0.128	167.001
Category	4	0.241	314.254
Category		0.024	30.810
HELP	5	0.024	30.810
Category	1	0.104	135.301
2 1		0.660	859.470
Category		0.063	82.294
Category		0.149	82.294 194.529
Category			
Category	5	0.024	31.405
ALONG_R	1	0 005	110 700
Category		0.085	110.708
Category		0.596	776.644
Category		0.096	124.768
Category	4	0.198	258.423
Category	5	0.025	32.457
SAFE	-	0 005	111 0.00
Category	1	0.085	111.263
Category		0.623	812.207
Category		0.106	137.679
Category	4	0.152	198.629
Category	5	0.033	43.222
VALUES_R			
Category	1	0.036	46.529

It is useful to compare this output to frequency counts from the data file used for initial data management in Stata, SAS or SPSS.

This ensures that the variables were correctly pulled in to Mplus.

Category Category Category Category TRUST	3 4	0.455 0.122 0.347 0.040	593.188 159.053 451.771 52.458
Category	1	0.043	56.042
Category Category	2 3	0.607 0.118	791.541 153.238
Category Category	4 5	0.203 0.028	265.062 37.118
SKIP	-		
Category Category Category Category	1 2 3 4	0.217 0.390 0.063 0.236	282.169 508.143 81.787 307.307
Category GRAFFITI	5	0.095	123.595
Category Category Category Category DISRESPE	2 3 4	0.388 0.345 0.046 0.160 0.061	505.255 449.308 59.931 208.419 80.087
Category Category Category Category Category	2 3 4	0.168 0.393 0.103 0.247 0.089	218.540 512.093 134.355 321.480 116.531

SAMPLE STATISTICS

ESTIMATED SAMPLE STATISTICS

Note: Thresholds are a component of the estimation of models with categorical indicators. Thresholds refer to the amount of the distribution of a latent, underlying continuous version of each ordered categorical item must respond in a certain category of the observed ordinal item.

	MEANS/INTERCEP	TS/THRESHOLDS	ord	inal item.	
	CLOSEKNI	CLOSEKNI	CLOSEKNI	CLOSEKNI	ADULTS\$1
1	-1.631	0.056	0.215	1.820	-1.707
	MEANS/INTERCEP				
	ADULTS\$2	ADULTS\$3	ADULTS\$4	HELP\$1	HELP\$2
1	0.311	0.719	2.214	-1.389	0.789
	MEANS/INTERCEP	- 1			
	HELP\$3	HELP\$4	ALONG_R\$	ALONG_R\$	ALONG_R\$
1	1.032	2.161	-1.514	0.539	0.857
	MEANS/INTERCEP				
	ALONG_R\$	SAFE\$1	SAFE\$2	SAFE\$3	SAFE\$4
1	2.132	-1.429	0.585	0.944	1.929
	MEANS/INTERCEP				
	VALUES_R	VALUES_R	VALUES_R	VALUES_R	TRUST\$1
1	-1.909	-0.013	0.317	1.859	-1.981

	MEANS/INTERCEP	IS/THRESHOLDS			
	TRUST\$2	TRUST\$3	TRUST\$4	SKIP\$1	SKIP\$2
1	0.462	0.864	2.172	-0.831	0.299
	MEANS/INTERCEP:				
	SKIP\$3	SKIP\$4	GRAFFITI	GRAFFITI	GRAFFITI
1	0.480	1.413	-0.302	0.753	0.919
	MEANS/INTERCEP GRAFFITI	IS/THRESHOLDS DISRESPE	DISRESPE	DISRESPE	DISRESPE
1	1.783	-1.003	0.162	0.445	1.415

These values represent the sample variances and covariances across individuals, within neighborhoods. High values indicate greater levels of shared variance among the items.

WITHIN LEVEL VARIANCE/COVARIANCE

	CLOSEKNI	ADULTS	HELP	ALONG_R	SAFE
CLOSEKNI	1.000				
ADULTS	0.455	1.000			
HELP	0.453	0.475	1.000		
ALONG R	0.201	0.314	0.391	1.000	
SAFE	0.407	0.412	0.444	0.243	1.000
VALUES R	0.194	0.058	0.137	0.335	0.125
TRUST	0.389	0.397	0.516	0.329	0.414
SKIP	0.252	0.157	0.235	0.169	0.401
GRAFFITI	0.202	0.273	0.289	0.246	0.377
DISRESPE	0.290	0.188	0.273	0.224	0.276
	WITHIN LEVEL V.	ARIANCE/COVARI	ANCE		
	VALUES_R	TRUST	SKIP	GRAFFITI	DISRESPE
VALUES_R TRUST	1.000 0.207	1.000			
SKIP	0.166	0.373	1.000		
GRAFFITI	0.152	0.348	0.581	1.000	
DISRESPE	0.132	0.296	0.420	0.459	1.000
DISKESFE	0.115	0.290	0.420	0.439	1.000
			Th	nese values repre	esent the
					ariance/covariance
	WITHIN LEVEL C	ORRELATION	ma	atrix at the ind	ividual level.
	CLOSEKNI	ADULTS	HELP	ALONG_R	SAFE
CLOSEKNI	1.000				
ADULTS	0.455	1.000			
HELP	0.453	0.475	1.000		
ALONG R	0.201	0.314	0.391	1.000	
SAFE _	0.407	0.412	0.444	0.243	1.000
VALUES R	0.194	0.058	0.137	0.335	0.125
TRUST -	0.389	0.397	0.516	0.329	0.414
SKIP	0.252	0.157	0.235	0.169	0.401
GRAFFITI	0.202	0.273	0.289	0.246	0.377
DISRESPE	0.290	0.188	0.273	0.224	0.276

	WITHIN LEVEL		QWID		DIGDEGDE
	VALUES_R	TRUST	SKIP	GRAFFITI	DISRESPE
VALUES_R TRUST SKIP GRAFFITI DISRESPE	1.000 0.207 0.166 0.152 0.113	1.000 0.373 0.348 0.296	1.000 0.581 0.420	1.000 0.459	1.000

BETWEEN LEVEL VARIANCE/COVARIANCE

BETWEEN LEVEL CORRELATION

These values represent the sample variances and covariances across neighborhoods. High values indicate greater levels of shared variance among the items.

CLOSEKNI ADULTS HELP ALONG R SAFE 0.137 CLOSEKNI 0.275 0.134 ADULTS 0.109 0.093 0.183 0.211 HELP 0.160 0.168 0.110 0.121 0.220 0.216 ALONG_R 0.097 0.132 0.209 0.102 0.115 SAFE 0.068 0.097 0.071 0.151 VALUES R 0.074 0.224 0.153 TRUST 0.068 0.089 0.072 SKIP 0.094 0.100 0.231 GRAFFITI 0.166 0.264 0.206 0.142 0.035 DISRESPE 0.058 0.055 0.055 0.018

BETWEEN LEVEL VARIANCE/COVARIANCE VALUES R TRUST SKIP GRAFFITI DISRESPE 0.128 VALUES R TRUST 0.341 0.150 0.125 SKIP 0.079 0.143 GRAFFITI 0.149 0.292 0.176 0.376 DISRESPE 0.042 0.032 0.035 0.046 0.099

These values represent the standardardized variance/covariance matrix at the neighborhood level.

	CLOSEKNI	ADULTS	HELP	ALONG_R	SAFE	
CLOSEKNI	1.000	1.000				
ADULTS	0.691	1.000				
HELP	0.642	0.760	1.000			
ALONG_R	0.540	0.657	0.789	1.000		
SAFE	0.592	0.625	0.767	0.667	1.000	
VALUES R	0.537	0.616	0.738	0.796	0.662	
TRUST -	0.698	0.732	0.820	0.769	0.842	
SKIP	0.670	0.504	0.392	0.507	0.611	
GRAFFITI	0.731	0.820	0.733	0.809	0.741	
DISRESPE	0.498	0.332	0.384	0.241	0.182	

	BETWEEN LEVEL	CORRELATION			
	VALUES R	TRUST	SKIP	GRAFFITI	DISRESPE
	—				
VALUES_R	1.000				
TRUST	0.716	1.000			
SKIP	0.587	0.565	1.000		
GRAFFITI	0.678	0.814	0.759	1.000	
DISRESPE	0.374	0.175	0.292	0.239	1.000

THE MODEL ESTIMATION TERMINATED NORMALLY

MODEL FIT INFORMATION

Number of Free Parameters	71
Chi-Square Test of Model Fit	
Value Degrees of Freedom P-Value	629.816* 69 0.0000

* The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference testing in the regular way. MLM, MLR and WLSM chi-square difference testing is described on the Mplus website. MLMV, WLSMV, and ULSMV difference testing is done using the DIFFTEST option.

RMSEA (Root Mean Square Error Of Approximation)

	Estimate	0.079
CFI/TLI		
	CFI	0.903
	TLI	0.874

Chi-Square Test of Model Fit for the Baseline Model

Value			5899.990
Degrees	of	Freedom	90
P-Value			0.0000

SRMR (Standardized Root Mean Square Residual)

Value	for	Within	0.054
Value	for	Between	0.073

WRMR (Weighted Root Mean Square Residual)

Value

RMSEA summarizes the extent to which the model is a good approximation of the observed data. Values below 0.05 indicate close fit. Values above 0.10 indicate poor fit.

The CFI and TLI are measures of model fit. They have a range from 0 to 1, with higher values indicating better fit.

The SRMR is the only value provided separately at the within- and between-level. The SRMR summarizes the mean absolute value of the correlation residuals for each level. Values below 0.10 are generally acceptable, although values smaller than 0.05 are preferred.

See Kline (2001) for more information on interpretation of fit indices.

1.694

MODEL RESULTS

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
Within Level				
COHESION BY CLOSEKNI ADULTS HELP NONC D	1.000 1.023 1.236 0.677	0.000 0.081 0.065	999.000 12.692 19.098 15.724	0.000 0.000
ALONG_R SAFE VALUES_R TRUST	1.074 0.348 1.169	0.043 0.054 0.030 0.069	19.834 19.834 11.413 16.889	0.000 0.000 0.000 0.000
CONTROL BY SKIP GRAFFITI DISRESPE	1.000 1.146 0.738	0.000 0.082 0.055	999.000 13.908 13.434	999.000 0.000 0.000
COHESION WITH CONTROL	0.524	0.037	14.194	0.000
Variances COHESION CONTROL	0.633 1.104	0.055 0.096	11.558 11.450	0.000 0.000
Between Level				
COL_EFF BY CLOSEKNI ADULTS HELP ALONG_R SAFE VALUES_R TRUST SKIP GRAFFITI DISRESPE	1.000 1.520 1.505 1.193 0.916 0.817 1.951 0.999 2.433 0.384	0.000 0.399 0.392 0.235 0.248 0.517 0.249 0.566 0.155	3.810 3.837 3.081 3.905 3.291 3.777 4.012	999.000 0.000 0.002 0.000 0.001 0.000 0.000 0.000 0.000 0.014
Thresholds CLOSEKNI\$1 CLOSEKNI\$2 CLOSEKNI\$3 CLOSEKNI\$4 ADULTS\$1 ADULTS\$2 ADULTS\$3 ADULTS\$4 HELP\$1 HELP\$2 HELP\$3 HELP\$4 ALONG_R\$1 ALONG_R\$1 ALONG_R\$3 ALONG_R\$4 SAFE\$1 SAFE\$2 SAFE\$3 SAFE\$4	-2.084 0.071 0.274 2.326 -2.202 0.401 0.928 2.855 -1.948 1.106 1.447 3.030 -1.719 0.612 0.973 2.421 -1.880 0.769 1.242 2.537	0.089 0.072 0.076 0.096 0.127 0.103 0.098 0.147 0.114 0.099 0.099 0.099 0.106 0.094 0.084 0.088 0.111 0.079 0.074 0.077 0.089	-23.394 0.983 3.624 24.351 -17.316 3.905 9.505 19.453 -17.152 11.202 14.648 28.615 -18.200 7.317 11.082 21.729 -23.660 10.457 16.102 28.489	0.000 0.325 0.000

These are the unstandardized model results. Each estimate represents a factor loading or "lambda" coefficient. Each loading can be interpreted similarly to a beta coefficient from a regression analysis.

By default, Mplus constrains the first factor loading for each factor to 1.

VALUES_R\$1 VALUES_R\$2 VALUES_R\$3 VALUES_R\$4 TRUST\$1 TRUST\$2 TRUST\$3 TRUST\$4 SKIP\$1 SKIP\$2 SKIP\$3 SKIP\$3 SKIP\$4 GRAFFITI\$1 GRAFFITI\$2 GRAFFITI\$2 GRAFFITI\$2 DISRESPE\$1 DISRESPE\$3 DISRESPE\$4	$\begin{array}{c} -1.981\\ -0.013\\ 0.329\\ 1.929\\ -2.706\\ 0.631\\ 1.180\\ 2.967\\ -1.205\\ 0.434\\ 0.696\\ 2.049\\ -0.473\\ 1.180\\ 1.439\\ 2.791\\ -1.270\\ 0.205\\ 0.563\\ 1.791\end{array}$	0.073 0.058 0.059 0.074 0.158 0.119 0.122 0.137 0.090 0.091 0.089 0.110 0.147 0.152 0.160 0.073 0.066 0.073	-26.998 -0.226 5.624 26.111 -17.082 5.321 9.708 21.616 -13.379 4.785 7.835 18.580 -3.223 7.658 9.473 17.463 3.129 8.552 24.481	0.000 0.821 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Variances				
COL_EFF	0.134	0.064	2.104	0.035
Residual Variance CLOSEKNI ADULTS HELP ALONG_R SAFE VALUES_R TRUST SKIP GRAFFITI DISRESPE	es 0.090 0.146 0.110 0.088 0.055 0.048 0.125 0.167 0.127 0.139	0.030 0.041 0.037 0.027 0.022 0.019 0.045 0.046 0.069 0.042	3.044 3.607 2.952 3.195 2.489 2.538 2.751 3.669 1.849 3.329	0.002 0.000 0.003 0.011 0.013 0.011 0.006 0.000 0.064 0.001 These are the standardized model results, which are presented in
STANDARDIZED MODEI				Table 5. Each loading can be interpreted similarly to a regression coefficient in standard deviation units.
STDYX Standardizat	lon			
	Estimate	S.E.	Est./S.E.	p-Tailed P-Value
Within Level				
COHESION BY CLOSEKNI ADULTS HELP ALONG_R SAFE VALUES_R TRUST	0.622 0.631 0.701 0.474 0.649 0.266 0.681	0.016 0.019 0.014 0.017 0.015 0.018 0.015	37.736 32.775 49.943 28.612 42.788 14.625 46.453	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CONTROL BY SKIP GRAFFITI DISRESPE	0.724 0.769 0.613	0.015 0.017 0.020	48.186 45.883 31.102	0.000 0.000 0.000

COHESION WITH CONTROL	0.627	0.020	32.147	0.000
Variances COHESION CONTROL	1.000	0.000	999.000 999.000	999.000 999.000
Between Level				
COL EFF BY				
CLOSEKNI	0.774	0.073	10.632	0.000
ADULTS	0.824	0.053	15.645	0.000
HELP	0.857	0.054	15.775	0.000
ALONG_R	0.828	0.066	12.585	0.000
SAFE	0.819	0.063	12.946	0.000
VALUES_R	0.807	0.070	11.501	0.000
TRUST SKIP	0.897 0.667	0.053 0.082	17.049 8.152	0.000 0.000
GRAFFITI	0.928	0.038	24.268	0.000
DISRESPE	0.353	0.127	2.782	0.005
Thresholds				
CLOSEKNI\$1	-1.631	0.069	-23.640	0.000
CLOSEKNI\$2	0.056	0.057	0.985	0.325
CLOSEKNI\$3	0.215	0.059	3.645	0.000
CLOSEKNI\$4 ADULTS\$1	1.820 -1.707	0.072 0.093	25.303 -18.413	0.000 0.000
ADULTS\$1 ADULTS\$2	0.311	0.093	-10.413 3.847	0.000
ADULTS\$3	0.719	0.078	9.239	0.000
ADULTS\$4	2.214	0.119	18.559	0.000
HELP\$1	-1.389	0.079	-17.681	0.000
HELP\$2	0.789	0.071	11.060	0.000
HELP\$3	1.032	0.071	14.481	0.000
HELP\$4	2.161	0.077	27.891	0.000
ALONG_R\$1	-1.514	0.083	-18.300	0.000
ALONG_R\$2	0.539	0.074	7.296	0.000
ALONG_R\$3	0.857	0.077	11.056	0.000
ALONG_R\$4 SAFE\$1	2.132 -1.429	0.100 0.062	21.254 -23.224	0.000
SAFE\$1 SAFE\$2	0.585	0.055		0.000 0.000
SAFE\$3	0.944	0.057	16.599	0.000
SAFE\$4	1.929	0.062	30.871	0.000
VALUES R\$1	-1.909	0.071	-26.889	0.000
VALUES_R\$2	-0.013	0.056	-0.226	0.821
VALUES_R\$3	0.317	0.056	5.640	0.000
VALUES_R\$4	1.859	0.070	26.486	0.000
TRUST\$1	-1.981	0.114	-17.372	0.000
TRUST\$2	0.462	0.087	5.335	0.000
TRUST\$3 TRUST\$4	0.864 2.172	0.088 0.104	9.808 20.796	0.000 0.000
SKIP\$1	-0.831	0.065	-12.846	0.000
SKIP\$2	0.299	0.061	4.908	0.000
SKIP\$3	0.480	0.059	8.196	0.000
SKIP\$4	1.413	0.066	21.467	0.000
GRAFFITI\$1	-0.302	0.092	-3.285	0.001
GRAFFITI\$2	0.753	0.101	7.466	0.000
GRAFFITI\$3	0.919	0.100	9.224	0.000
GRAFFITI\$4	1.783	0.108	16.470	0.000
DISRESPE\$1	-1.003	0.055	-18.204	0.000
DISRESPE\$2	0.162	0.052	3.128	0.002
DISRESPE\$3	0.445	0.052 0.054	8.593	0.000
DISRESPE\$4	1.415	0.004	26.211	0.000

Variances COL_EFF	1.000	0.000	999.000	999.000
Residual Variances				
CLOSEKNI	0.401	0.113	3.555	0.000
ADULTS	0.320	0.087	3.689	0.000
HELP	0.265	0.093	2.850	0.004
ALONG_R	0.314	0.109	2.882	0.004
SAFE	0.329	0.104	3.173	0.002
VALUES R	0.349	0.113	3.088	0.002
TRUST	0.196	0.094	2.080	0.038
SKIP	0.555	0.109	5.082	0.000
GRAFFITI	0.138	0.071	1.943	0.052
DISRESPE	0.875	0.090	9.781	0.000

R-SQUARE

Within Level

Observed				Two-Tailed	Scale
Variable	Estimate	S.E.	Est./S.E.	P-Value	Factors
CLOSEKNI	0.387	0.021	18.868	0.000	0.783
ADULTS	0.398	0.024	16.388	0.000	0.776
HELP	0.491	0.020	24.971	0.000	0.713
ALONG_R	0.225	0.016	14.306	0.000	0.880
SAFE	0.422	0.020	21.394	0.000	0.760
VALUES_R	0.071	0.010	7.313	0.000	0.964
TRUST	0.464	0.020	23.227	0.000	0.732
SKIP	0.525	0.022	24.093	0.000	0.689
GRAFFITI	0.592	0.026	22.941	0.000	0.639
DISRESPE	0.376	0.024	15.551	0.000	0.790

Between Level

Observed				Two-Tailed
Variable	Estimate	S.E.	Est./S.E.	P-Value
CLOSEKNI	0.599	0.113	5.316	0.000
ADULTS	0.680	0.087	7.822	0.000
HELP	0.735	0.093	7.887	0.000
ALONG_R	0.686	0.109	6.292	0.000
SAFE	0.671	0.104	6.473	0.000
VALUES_R	0.651	0.113	5.750	0.000
TRUST	0.804	0.094	8.525	0.000
SKIP	0.445	0.109	4.076	0.000
GRAFFITI	0.862	0.071	12.134	0.000
DISRESPE	0.125	0.090	1.391	0.164

QUALITY OF NUMERICAL RESULTS

Condition	Number	for th	e Inform	ation Ma	atrix	0.130E-03
(ratio	of small	lest to	largest	eigenva	alue)	

ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED)

	Model Estimated CLOSEKNI	Means/Interc CLOSEKNI	epts/Thresholds CLOSEKNI	CLOSEKNI	ADULTS\$1
1	-1.631	0.056	0.215	1.820	-1.707
	Model Estimated ADULTS\$2	Means/Interc ADULTS\$3	epts/Thresholds ADULTS\$4	HELP\$1	HELP\$2
1	0.311	0.719	2.214	-1.389	0.789
	Model Estimated HELP\$3	Means/Interc HELP\$4	epts/Thresholds ALONG_R\$	ALONG_R\$	ALONG_R\$
1	1.032	2.161	-1.514	0.539	0.857
	Model Estimated ALONG_R\$	Means/Interc SAFE\$1	epts/Thresholds SAFE\$2	SAFE\$3	SAFE\$4
1	2.132	-1.429	0.585	0.944	1.929
	Model Estimated VALUES_R	Means/Interc VALUES_R	epts/Thresholds VALUES_R	VALUES_R	TRUST\$1
1	-1.909	-0.013	0.317	1.859	-1.981
	Model Estimated TRUST\$2 	TRUST\$3	TRUST\$4	SKIP\$1	SKIP\$2
1	0.462	0.864	2.172	-0.831	0.299
	Model Estimated SKIP\$3	Means/Interc SKIP\$4	epts/Thresholds GRAFFITI	GRAFFITI	GRAFFITI
1	0.480	1.413	-0.302	0.753	0.919
	Model Estimated GRAFFITI		epts/Thresholds DISRESPE	DISRESPE	DISRESPE
1	1.783	-1.003	0.162	0.445	1.415
	Residuals for M CLOSEKNI	eans/Intercep CLOSEKNI	ts/Thresholds CLOSEKNI	CLOSEKNI	ADULTS\$1
1	0.000	0.000	0.000	0.000	0.000
	Residuals for M ADULTS\$2	eans/Intercep ADULTS\$3	ts/Thresholds ADULTS\$4	HELP\$1	HELP\$2
1	0.000	0.000	0.000	0.000	0.000

1 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds ALONG_RS SAFES1 SAFES2 SAFES3 SAFES4 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds VALUES_R VALUES_R VALUES_R TRUST91 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds TRUST92 TRUST93 TRUST94 SKIP\$1 SKIP\$2 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds SKIP\$3 SKIP\$4 GRAFFITI GRAFFITI GRAFFITI 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds GRAFFITI DISRESPE DISRESPE DISRESPE DISRESPE DISRESPE 1 0.000 0.000 0.000 0.000 0.000 0.000 Model E		Residuals for HELP\$3	Means/Intercep HELP\$4	ots/Thresholds ALONG_R\$	ALONG_R\$	ALONG_R\$
ALONG_R\$ SAFE\$1 SAFE\$2 SAFE\$3 SAFE\$4 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds VALUES_R VALUES_R VALUES_R VALUES_R TRUST\$1 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds TRUST\$2 TRUST\$4 SKIP\$1 SKIP\$2 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds SKIP\$3 SKIP\$4 GRAFFITI GRAFFITI GRAFFITI 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds GRAFFITI DISRESPE DISRESPE DISRESPE DISRESPE DISRESPE 1 0.000 0.000 0.000 0.000 0.000 0.000 Model Estimated Within Level Covariances ALONG_R SAFE CLOSEKNI 1.000 Adu 0.232 0.402	1	0.000	0.000	0.000	0.000	0.000
ALONG_R\$ SAFE\$1 SAFE\$2 SAFE\$3 SAFE\$4 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds VALUES_R VALUES_R VALUES_R VALUES_R TRUST\$1 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds TRUST\$2 TRUST\$4 SKIP\$1 SKIP\$2 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds SKIP\$3 SKIP\$4 GRAFFITI GRAFFITI GRAFFITI 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds GRAFFITI DISRESPE DISRESPE DISRESPE DISRESPE DISRESPE 1 0.000 0.000 0.000 0.000 0.000 0.000 Model Estimated Within Level Covariances ALONG_R SAFE CLOSEKNI 1.000 Adu 0.232 0.402		Residuals for	Means/Intercer	ots/Thresholds		
Residuals for Means/Intercepts/Thresholds VALUES_R VALUES_R VALUES_R VALUES_R TRUST\$1 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds TRUST\$2 TRUST\$3 TRUST\$4 SKIP\$1 SKIP\$2 1 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds GRAFFITI GRAFFITI GRAFFITI GRAFFITI GRAFFITI 1 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 ALONG_R					SAFE\$3	SAFE\$4
VALUES_R VALUES_R VALUES_R VALUES_R VALUES_R TRUST\$1 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds TRUST\$2 TRUST\$3 TRUST\$4 SKIP\$1 SKIP\$2 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds SKIP\$1 GRAFFITI GRAFFITI GRAFFITI 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds GRAFFITI GRAFFITI GRAFFITI GRAFFITI 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds GRAFFITI GRAFFITI GRAFFITI GRAFFITI 1 0.000 0.000 0.000 0.000 0.000 0.000 Model Estimated Within Level Covariances ALONG_R SAFE 0.424 0.430 0.477 0.323 0.442 <t< td=""><td>1</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td></t<>	1	0.000	0.000	0.000	0.000	0.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Residuals for	Means/Intercep	ots/Thresholds		
Residuals for Means/Intercepts/Thresholds TRUST\$2 SKIP\$1 SKIP\$2 1 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds SKIP\$3 SKIP\$4 GRAFFITI GRAFFITI GRAFFITI 1 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds GRAFFITI DISRESPE DISRESPE DISRESPE DISRESPE 1 0.000 0.000 0.000 0.000 0.000 0.000 Model Estimated Within Level Covariances CLOSEKNI ALONG_R SAFE SAFE CLOSEKNI 1.000 0.404 0.410 0.455 0.308 1.000 ALONG_R 0.295 0.299 0.332 1.000 0.442 0.436 0.477 0.323 0.442 SKIP 0.466 0.187 </td <td></td> <td>VALUES_R</td> <td>VALUES_R</td> <td>VALUES_R</td> <td>VALUES_R</td> <td>TRUST\$1</td>		VALUES_R	VALUES_R	VALUES_R	VALUES_R	TRUST\$1
TRUST\$2 TRUST\$3 TRUST\$4 SKIP\$1 SKIP\$2 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds SKIP\$3 SKIP\$4 GRAFFITI GRAFFITI GRAFFITI 1 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds GRAFFITI GRAFFITI GRAFFITI GRAFFITI 1 0.000 0.000 0.000 0.000 0.000 0.000 Model Estimated Within Level Covariances CLOSEKNI ALONG_R SAFE ALONG_R SAFE CLOSEKNI 1.000 0.404 0.410 0.455 0.308 1.000 NAUES_R 0.166 0.168 0.187 0.126 0.173 RUST 0.424 0.430 0.477 <td>1</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td> <td>0.000</td>	1	0.000	0.000	0.000	0.000	0.000
1 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds SKIP\$3 SKIP\$4 GRAFFITI GRAFFITI GRAFFITI 1 0.000 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds GRAFFITI DISRESPE DISRESPE DISRESPE DISRESPE 1 0.000 0.000 0.000 0.000 0.000 0.000 Model Estimated Within Level Covariances CLOSEKNI ADULTS HELP ALONG_R SAFE CLOSEKNI 1.000						
Residuals for Means/Intercepts/Thresholds SKIP\$3 GRAFFITI GRAFFITI GRAFFITI GRAFFITI GRAFFITI GRAFFITI 1 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds GRAFFITI DISRESPE DISRESPE DISRESPE DISRESPE 1 0.000 0.000 0.000 0.000 0.000 0.000 Model Estimated Within Level Covariances ALONG_R SAFE SAFE SAFE CLOSEKNI 1.000 0.442 1.000 ALONG_R SAFE CLOSEKNI 1.000 0.442 1.000 ALONG_R 0.295 0.299 0.332 1.000 ALONG R 0.295 0.299 0.332 1.000 SAFE 0.404 0.410 0.455 0.308 1.000 VALUES_R 0.166 0.168 0.187 0.126 0.173 TRUST 0.243 0.270 0.182 0.250 0.250 VALUES_R </td <td></td> <td>TRUST\$2</td> <td>TRUST\$3</td> <td>TRUST\$4</td> <td>SKIP\$1</td> <td>SKIP\$2</td>		TRUST\$2	TRUST\$3	TRUST\$4	SKIP\$1	SKIP\$2
SKIP\$3 SKIP\$4 GRAFFITI GRAFFITI GRAFFITI 1 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds GRAFFITI DISRESPE DISRESPE DISRESPE DISRESPE 1 0.000 0.000 0.000 0.000 0.000 0.000 Model Estimated Within Level Covariances CLOSEKNI ADULTS HELP ALONG_R SAFE 0.400 0.436 0.442 1.000 0.100 0.100 0.000 ADULTS 0.393 1.000 0.442 1.000 0.100 0.100 ALONG_R 0.295 0.299 0.332 1.000 0.000 0.000 VALUES_R 0.404 0.410 0.455 0.308 1.000 SKIP 0.283 0.287 0.319 0.216 0.295 GRAFFITI 0.305 0.338 0.229 0.314 DISRESPE 0.239 0.243 0.270 0.182 0.250 WALUES	1	0.000	0.000	0.000	0.000	0.000
1 0.000 0.000 0.000 0.000 0.000 Residuals for Means/Intercepts/Thresholds GRAFFITI DISRESPE DISRESPE DISRESPE DISRESPE 1 0.000 0.000 0.000 0.000 0.000 Model Estimated Within Level Covariances CLOSEKNI ADULTS HELP ALONG_R SAFE CLOSEKNI 1.000		Residuals for	Means/Intercep	ots/Thresholds		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		SKIP\$3	SKIP\$4	GRAFFITI	GRAFFITI	GRAFFITI
GRAFFITI DISRESPE DISRESPE DISRESPE DISRESPE DISRESPE 1 0.000 0.000 0.000 0.000 0.000 0.000 Model Estimated Within Level Covariances ALONG_R SAFE CLOSEKNI ADULTS HELP ALONG_R SAFE OLOGO 0.393 1.000	1	0.000	0.000	0.000	0.000	0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					DISRESPE	DISRESPE
CLOSEKNI ADULTS HELP ALONG_R SAFE CLOSEKNI 1.000 ADULTS 0.393 1.000 ALONG_R 0.393 1.000 ALONG_R 0.295 0.299 0.332 1.000 SAFE 0.404 0.410 0.455 0.308 1.000 SAFE 0.404 0.410 0.455 0.308 1.000 VALUES_R 0.166 0.168 0.187 0.126 0.295 GRAFFITI 0.301 0.305 0.338 0.229 0.314 DISRESPE 0.239 0.243 0.270 0.182 0.250 Model Estimated Within Level Covariances VALUES_R 1.000 VALUES_R 0.181	1	0.000	0.000	0.000	0.000	0.000
CLOSEKNI ADULTS HELP ALONG_R SAFE CLOSEKNI 1.000 ADULTS 0.393 1.000 ALONG_R 0.393 1.000 ALONG_R 0.295 0.299 0.332 1.000 SAFE 0.404 0.410 0.455 0.308 1.000 SAFE 0.404 0.410 0.455 0.308 1.000 VALUES_R 0.166 0.168 0.187 0.126 0.295 GRAFFITI 0.301 0.305 0.338 0.229 0.314 DISRESPE 0.239 0.243 0.270 0.182 0.250 Model Estimated Within Level Covariances VALUES_R 1.000 VALUES_R 0.181		Model Estimate	d Within Level	Covariances		
ADULTS 0.393 1.000 HELP 0.436 0.442 1.000 ALONG_R 0.295 0.299 0.332 1.000 SAFE 0.404 0.410 0.455 0.308 1.000 VALUES_R 0.166 0.168 0.187 0.126 0.173 TRUST 0.424 0.430 0.477 0.323 0.442 SKIP 0.283 0.287 0.319 0.216 0.295 GRAFFITI 0.301 0.305 0.338 0.229 0.314 DISRESPE 0.239 0.243 0.270 0.182 0.250 Model Estimated Within Level Covariances VALUES_R TRUST SKIP GRAFFITI DISRESPE VALUES_R 1.000 TRUST 0.181 1.000 SKIP 0.121 0.310 1.000 GRAFFITI 0.129 0.329 0.557 1.000					ALONG_R	SAFE
HELP 0.436 0.442 1.000 ALONG_R 0.295 0.299 0.332 1.000 SAFE 0.404 0.410 0.455 0.308 1.000 VALUES_R 0.166 0.168 0.187 0.126 0.173 TRUST 0.424 0.430 0.477 0.323 0.442 SKIP 0.283 0.287 0.319 0.216 0.295 GRAFFITI 0.301 0.305 0.338 0.229 0.314 DISRESPE 0.239 0.243 0.270 0.182 0.250 Model Estimated Within Level Covariances VALUES_R TRUST SKIP GRAFFITI DISRESPE VALUES_R 1.000 TRUST 0.181 1.000 SKIP 0.121 0.310 1.000 GRAFFITI 0.129 0.329 GRAFFITI 0.129 0.329 0.557 1.000 1.000			1 000			
SAFE 0.404 0.410 0.455 0.308 1.000 VALUES_R 0.166 0.168 0.187 0.126 0.173 TRUST 0.424 0.430 0.477 0.323 0.442 SKIP 0.283 0.287 0.319 0.216 0.295 GRAFFITI 0.301 0.305 0.338 0.229 0.314 DISRESPE 0.239 0.243 0.270 0.182 0.250 Model Estimated Within Level Covariances VALUES_R TRUST SKIP GRAFFITI DISRESPE VALUES_R 1.000 TRUST 0.181 1.000 SKIP 0.121 0.310 1.000 GRAFFITI 0.129 GRAFFITI 0.129 0.329 0.557 1.000				1.000		
VALUES_R 0.166 0.168 0.187 0.126 0.173 TRUST 0.424 0.430 0.477 0.323 0.442 SKIP 0.283 0.287 0.319 0.216 0.295 GRAFFITI 0.301 0.305 0.338 0.229 0.314 DISRESPE 0.239 0.243 0.270 0.182 0.250 Model Estimated Within Level Covariances VALUES_R TRUST SKIP GRAFFITI DISRESPE VALUES_R 1.000	ALONG_R			0.332	1.000	
TRUST 0.424 0.430 0.477 0.323 0.442 SKIP 0.283 0.287 0.319 0.216 0.295 GRAFFITI 0.301 0.305 0.338 0.229 0.314 DISRESPE 0.239 0.243 0.270 0.182 0.250 Model Estimated Within Level Covariances VALUES_R TRUST SKIP GRAFFITI DISRESPE VALUES_R 1.000						
SKIP 0.283 0.287 0.319 0.216 0.295 GRAFFITI 0.301 0.305 0.338 0.229 0.314 DISRESPE 0.239 0.243 0.270 0.182 0.250 Model Estimated Within Level Covariances VALUES_R TRUST SKIP GRAFFITI DISRESPE VALUES_R 1.000						
GRAFFITI 0.301 0.305 0.338 0.229 0.314 DISRESPE 0.239 0.243 0.270 0.182 0.250 Model Estimated Within Level Covariances VALUES_R TRUST SKIP GRAFFITI DISRESPE VALUES_R 1.000 1.000 SKIP 0.121 0.310 1.000 GRAFFITI 0.129 0.329 0.557 1.000						
Model Estimated Within Level Covariances VALUES_R TRUST SKIPGRAFFITIDISRESPEVALUES_R1.000VALUES_R1.000TRUST0.1811.0001.000GRAFFITI0.1210.3101.0001.000						
VALUES_R TRUST SKIP GRAFFITI DISRESPE VALUES_R 1.000 TRUST 0.181 1.000 SKIP 0.121 0.310 1.000 GRAFFITI 0.129 0.329 0.557 1.000	DISRESPE	0.239	0.243	0.270	0.182	0.250
VALUES_R 1.000 TRUST 0.181 1.000 SKIP 0.121 0.310 1.000 GRAFFITI 0.129 0.329 0.557 1.000						
TRUST0.1811.000SKIP0.1210.3101.000GRAFFITI0.1290.3290.5571.000		VALUES_R	TRUST	SKIP	GRAFFITI	DISRESPE
SKIP0.1210.3101.000GRAFFITI0.1290.3290.5571.000						
GRAFFITI 0.129 0.329 0.557 1.000				1 000		
					1.000	
						1.000

	Residuals for CLOSEKNI	Within Level ADULTS	Covariances HELP	ALONG_R	SAFE
CLOSEKNI	0.000				
ADULTS	0.062	0.000			
HELP	0.016	0.032	0.000		
ALONG R	-0.094	0.015	0.058	0.000	
SAFE	0.003	0.002	-0.011	-0.065	0.000
VALUES_R	0.028	-0.110	-0.050	0.209	-0.048
TRUST	-0.035	-0.033	0.039	0.006	-0.029
SKIP	-0.031	-0.130	-0.084	-0.046	0.106
GRAFFITI	-0.098	-0.032	-0.050	0.017	0.064
DISRESPE	0.051	-0.055	0.003	0.041	0.026

	Residuals for VALUES_R	Within Level TRUST	Covariances SKIP	GRAFFITI	DISRESPE
VALUES_R TRUST SKIP GRAFFITI DISRESPE	0.000 0.025 0.045 0.024 0.011	0.000 0.063 0.020 0.034	0.000 0.024 -0.024	0.000 -0.013	0.000

Model Estimated Within Level Correlations

	CLOSEKNI	ADULTS	HELP	ALONG_R	SAFE
CLOSEKNI	1.000				
ADULTS	0.393	1.000			
HELP	0.436	0.442	1.000		
ALONG R	0.295	0.299	0.332	1.000	
SAFE	0.404	0.410	0.455	0.308	1.000
VALUES R	0.166	0.168	0.187	0.126	0.173
TRUST -	0.424	0.430	0.477	0.323	0.442
SKIP	0.283	0.287	0.319	0.216	0.295
GRAFFITI	0.301	0.305	0.338	0.229	0.314
DISRESPE	0.239	0.243	0.270	0.182	0.250

	Model Estimated VALUES_R	Within Leve TRUST	l Correlations SKIP	GRAFFITI	DISRESPE
VALUES_R TRUST SKIP GRAFFITI DISRESPE	1.000 0.181 0.121 0.129 0.102	1.000 0.310 0.329 0.262	1.000 0.557 0.444	1.000	1.000

It is important to inspect the correlation residuals for signs of misfit. Correlations with an absolute value of 0.1 or greater should be flagged, and model modifications should be considered (assuming these modifications are consistent with theory).

	Residuals for W CLOSEKNI	Nithin Level (ADULTS	Correlations HELP	ALONG_R	SAFE
CLOSEKNI	0.000				
ADULTS	0.062	0.000			
HELP	0.016	0.032	0.000		
ALONG_R	-0.094	0.015	0.058	0.000	
SAFE	0.003	0.002	-0.011	-0.065	0.000
VALUES_R	0.028	-0.110	-0.050	0.209	-0.048
TRUST	-0.035	-0.033	0.039	0.006	-0.029
SKIP	-0.031	-0.130	-0.084	-0.046	0.106
GRAFFITI	-0.098	-0.032	-0.050	0.017	0.064
DISRESPE	0.051	-0.055	0.003	0.041	0.026
	Residuals for W	Nithin Level (Correlations		
	VALUES_R	TRUST	SKIP	GRAFFITI	DISRESPE
VALUES R	0.000				
TRUST -	0.025	0.000			
SKIP	0.045	0.063	0.000		
GRAFFITI	0.024	0.020	0.024	0.000	
DISRESPE	0.011	0.034	-0.024	-0.013	0.000
	Model Estimated CLOSEKNI	ADULTS	HELP	ALONG_R	SAFE
CLOSEKNI					0111 E
	0.137				
ADULTS	0.137 0.124	0.275			
ADULTS HELP		0.275	0.211		
	0.124		0.211 0.152	0.216	
HELP	0.124 0.113	0.170		0.216 0.098	0.097
HELP ALONG_R	0.124 0.113 0.110 0.073 0.083	0.170 0.166 0.110 0.125	0.152	0.098 0.111	
HELP ALONG_R SAFE	0.124 0.113 0.110 0.073 0.083 0.150	0.170 0.166 0.110 0.125 0.226	0.152 0.100 0.114 0.206	0.098 0.111 0.202	0.097 0.074 0.134
HELP ALONG_R SAFE VALUES_R	0.124 0.113 0.110 0.073 0.083 0.150 0.072	0.170 0.166 0.110 0.125 0.226 0.109	0.152 0.100 0.114 0.206 0.099	0.098 0.111 0.202 0.097	0.097 0.074 0.134 0.064
HELP ALONG_R SAFE VALUES_R TRUST	0.124 0.113 0.110 0.073 0.083 0.150 0.072 0.163	0.170 0.166 0.110 0.125 0.226 0.109 0.246	0.152 0.100 0.114 0.206 0.099 0.224	0.098 0.111 0.202 0.097 0.219	0.097 0.074 0.134 0.064 0.145
HELP ALONG_R SAFE VALUES_R TRUST SKIP	0.124 0.113 0.110 0.073 0.083 0.150 0.072	0.170 0.166 0.110 0.125 0.226 0.109	0.152 0.100 0.114 0.206 0.099	0.098 0.111 0.202 0.097	0.097 0.074 0.134 0.064
HELP ALONG_R SAFE VALUES_R TRUST SKIP GRAFFITI	0.124 0.113 0.110 0.073 0.083 0.150 0.072 0.163 0.032	0.170 0.166 0.110 0.125 0.226 0.109 0.246 0.048	0.152 0.100 0.114 0.206 0.099 0.224 0.044	0.098 0.111 0.202 0.097 0.219	0.097 0.074 0.134 0.064 0.145
HELP ALONG_R SAFE VALUES_R TRUST SKIP GRAFFITI	0.124 0.113 0.110 0.073 0.083 0.150 0.072 0.163	0.170 0.166 0.110 0.125 0.226 0.109 0.246 0.048	0.152 0.100 0.114 0.206 0.099 0.224 0.044	0.098 0.111 0.202 0.097 0.219	0.097 0.074 0.134 0.064 0.145
HELP ALONG_R SAFE VALUES_R TRUST SKIP GRAFFITI DISRESPE	0.124 0.113 0.110 0.073 0.083 0.150 0.072 0.163 0.032 Model Estimated VALUES_R	0.170 0.166 0.110 0.125 0.226 0.109 0.246 0.048	0.152 0.100 0.114 0.206 0.099 0.224 0.044	0.098 0.111 0.202 0.097 0.219 0.043	0.097 0.074 0.134 0.064 0.145 0.028
HELP ALONG_R SAFE VALUES_R TRUST SKIP GRAFFITI DISRESPE VALUES_R	0.124 0.113 0.110 0.073 0.083 0.150 0.072 0.163 0.032 Model Estimated VALUES_R 	0.170 0.166 0.110 0.125 0.226 0.109 0.246 0.048 d Between Leve TRUST	0.152 0.100 0.114 0.206 0.099 0.224 0.044	0.098 0.111 0.202 0.097 0.219 0.043	0.097 0.074 0.134 0.064 0.145 0.028
HELP ALONG_R SAFE VALUES_R TRUST GRAFFITI DISRESPE VALUES_R TRUST	0.124 0.113 0.110 0.073 0.083 0.150 0.072 0.163 0.032 Model Estimated VALUES_R 0.128 0.151	0.170 0.166 0.110 0.125 0.226 0.109 0.246 0.048 d Between Leve TRUST 0.341	0.152 0.100 0.114 0.206 0.099 0.224 0.044 el Covariances SKIP	0.098 0.111 0.202 0.097 0.219 0.043	0.097 0.074 0.134 0.064 0.145 0.028
HELP ALONG_R SAFE VALUES_R TRUST GRAFFITI DISRESPE VALUES_R TRUST SKIP	0.124 0.113 0.110 0.073 0.083 0.150 0.072 0.163 0.032 Model Estimated VALUES_R 0.128 0.151 0.073	0.170 0.166 0.110 0.125 0.226 0.109 0.246 0.048 d Between Leve TRUST 0.341 0.132	0.152 0.100 0.114 0.206 0.099 0.224 0.044 el Covariances SKIP 0.143	0.098 0.111 0.202 0.097 0.219 0.043 GRAFFITI	0.097 0.074 0.134 0.064 0.145 0.028
HELP ALONG_R SAFE VALUES_R TRUST GRAFFITI DISRESPE VALUES_R TRUST	0.124 0.113 0.110 0.073 0.083 0.150 0.072 0.163 0.032 Model Estimated VALUES_R 0.128 0.151	0.170 0.166 0.110 0.125 0.226 0.109 0.246 0.048 d Between Leve TRUST 0.341	0.152 0.100 0.114 0.206 0.099 0.224 0.044 el Covariances SKIP	0.098 0.111 0.202 0.097 0.219 0.043	0.097 0.074 0.134 0.064 0.145 0.028

	Residuals for CLOSEKNI	Between Level ADULTS	Covariances HELP	ALONG R	SAFE
				_	
CLOSEKNI	0.000				
ADULTS	0.010	0.000			
HELP	-0.004	0.013	0.000		
ALONG R	-0.017	-0.006	0.017	0.000	
SAFE	-0.005	-0.008	0.009	-0.002	0.000
VALUES R	-0.012	-0.009	0.008	0.021	0.000
TRUST -	0.001	-0.002	0.014	0.007	0.020
SKIP	0.022	-0.009	-0.031	-0.008	0.008
GRAFFITI	0.003	0.018	-0.018	0.011	-0.004
DISRESPE	0.026	0.007	0.012	-0.007	-0.010
	Residuals for	Retween Level	Covariances		

	Residuals for VALUES_R	Between Level TRUST	Covariances SKIP	GRAFFITI	DISRESPE
VALUES_R TRUST SKIP GRAFFITI DISRESPE	0.000 -0.001 0.007 -0.016 0.010	0.000 -0.007 -0.007 -0.026	0.000 0.033 0.007	0.000 -0.017	0.000

	Model Estimated	Between Level	Correlations		
	CLOSEKNI	ADULTS	HELP	ALONG_R	SAFE
CLOSEKNI	1.000				
ADULTS	0.638	1.000			
HELP	0.663	0.707	1.000		
ALONG R	0.641	0.683	0.710	1.000	
SAFE	0.634	0.675	0.702	0.678	1.000
VALUES R	0.624	0.665	0.691	0.668	0.661
TRUST -	0.694	0.739	0.768	0.743	0.734
SKIP	0.516	0.550	0.572	0.552	0.546
GRAFFITI	0.719	0.765	0.796	0.769	0.761
DISRESPE	0.273	0.291	0.302	0.292	0.289

	Model Estimate VALUES_R	d Between Lev TRUST	el Correlations SKIP	GRAFFITI	DISRESPE
VALUES_R TRUST SKIP GRAFFITI DISRESPE	1.000 0.723 0.538 0.749 0.285	1.000 0.598 0.832 0.316	1.000 0.619 0.235	1.000 0.328	1.000

It is important to inspect the correlation residuals for signs of misfit. Correlations with an absolute value of 0.1 or greater should be flagged, and model modifications should be considered (assuming these modifications are consistent with theory).

Residuals for Between Level Correlations

	CLOSEKNI	ADULTS	HELP	ALONG_R	SAFE
CLOSEKNI	0.000				
ADULTS	0.053	0.000			
HELP	-0.021	0.054	0.000		
ALONG R	-0.101	-0.025	0.079	0.000	
SAFE	-0.042	-0.050	0.065	-0.011	0.000
VALUES R	-0.088	-0.049	0.046	0.128	0.001
TRUST -	0.004	-0.007	0.052	0.027	0.107
SKIP	0.154	-0.046	-0.180	-0.045	0.065
GRAFFITI	0.012	0.055	-0.063	0.040	-0.020
DISRESPE	0.225	0.041	0.081	-0.051	-0.107
	Residuals for	Between Level	Correlations		
	VALUES R	TRUST	SKIP	GRAFFITI	DISRESPE

	VALUES_N	INUSI	SKIE	GIAPPITT	DISKESFE
VALUES_R	0.000				
TRUST	-0.007	0.000			
SKIP	0.048	-0.033	0.000		
GRAFFITI	-0.071	-0.019	0.140	0.000	
DISRESPE	0.090	-0.141	0.057	-0.089	0.000

SAVEDATA INFORMATION

Within and between sample statistics with Weight matrix

Save file cfa_swmatrix.dat Save format Free

DIAGRAM INFORMATION

Mplus diagrams are currently not available for multilevel analysis. No diagram output was produced.

Beginning Time: 17:02:16 Ending Time: 17:03:40 Elapsed Time: 00:01:24

MUTHEN & MUTHEN 3463 Stoner Ave. Los Angeles, CA 90066

Tel: (310) 391-9971 Fax: (310) 391-8971 Web: www.StatModel.com Support: Support@StatModel.com

Copyright (c) 1998-2012 Muthen & Muthen