Genome-Wide Association Study of Generalized Anxiety Symptoms in the Hispanic Community Health Study/Study of Latinos

Erin C. Dunn,,$^{1,2,3 *}$ Tamar Sofer, ${ }^{4}$ Linda C. Gallo, ${ }^{5}$ Stephanie M. Gogarten, ${ }^{4}$ Kathleen F. Kerr, ${ }^{4}$ Chia-Yen Chen, ${ }^{1,2,3,6}$ Murray B. Stein, ${ }^{\text { }}$ Robert J. Ursano, ${ }^{8}$ Xiuqing Guo, ${ }^{9}$ Yucheng Jia, ${ }^{9}$ Qibin $0 i,{ }^{10}$ Jerome I. Rotter, ${ }^{9,11}$ Maria Argos, ${ }^{12}$ Jianwen Cai, ${ }^{13}$ Frank J. Penedo, ${ }^{14}$ Krista Perreira, ${ }^{15}$ Sylvia Wassertheil-Smoller, ${ }^{10}$ and Jordan W. Smoller ${ }^{1,2,3}$
${ }^{1}$ Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
${ }^{2}$ Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
${ }^{3}$ Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
${ }^{4}$ Department of Biostatistics, University of Washington, Seattle, Washington
${ }^{5}$ Department of Psychology, San Diego State University, La Jolla, California
${ }^{6}$ Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
${ }^{\text {² Department of Psychiatry, University of California San Diego, San Diego, California }}$
${ }^{8}$ Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, Maryland
${ }^{9}$ Department of Pediatrics, Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California
${ }^{10}$ Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
${ }^{11}$ Department of Medicine, Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California
${ }^{12}$ School of Public Health, University of Illinois at Chicago, Chicago, Illinois
${ }^{13}$ Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
${ }^{14}$ Department of Medical Social Sciences, Northwestern University, Chicago, Illinois
${ }^{15}$ College and Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

Manuscript Received: 9 December 2015; Manuscript Accepted: 14 March 2016

Although generalized anxiety disorder (GAD) is heritable and aggregates in families, no genomic loci associated with GAD have been reported. We aimed to discover potential loci by conducting a genome-wide analysis of GAD symptoms in a large, populationbased sample of Hispanic/Latino adults. Data came from 12,282 participants (aged 18-74) in the Hispanic Community Health Study/Study of Latinos. Using a shortened Spielberger Trait Anxiety measure, we analyzed the following: (i) a GAD symptoms score restricted to the three items tapping diagnostic features of GAD as defined by DSM-V; and (ii) a total trait anxiety score based on summing responses to all ten items. We first calculated the heritability due to common variants ($h_{\text {SNP }}^{2}$) and then conducted a genome-wide association study (GWAS) of GAD symptoms. Replication was attempted in three independent Hispanic cohorts (Multi-Ethnic Study of Atherosclerosis, Women's Health Initiative, Army STARRS). The GAD symptoms score showed evidence of modest heritability (7.2%; $P=0.03$), while the total trait anxiety score did not ($4.97 \% ; P=0.20$). One genotyped SNP (rs78602344) intronic to thrombospondin 2 (THBS2) was

Disclosure: Dr. Dunn takes responsibility for the integrity of the data and accuracy of the analyses. All authors have reviewed and approved the final manuscript. None of the authors have any financial or other conflicts of interest.
Grant sponsor: National Heart, Lung, and Blood Institute (NHLBI); Grant numbers: N01- HC65233, N01-HC65234, N01-HC65235, N01HC65236, N01-HC65237; Grant sponsor: National Institute of Mental Health of the National Institutes of Health; Grant number: K01MH102403; Grant sponsor: NARSAD Young Investigator Grant from the Brain \& Behavior Research Foundation.
*Correspondence to:
Erin C. Dunn, Sc.D., M.P.H., Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, Simches Research Building 6th Floor, Boston, MA 02114.
E-mail: edunn2@mgh.harvard.edu
Article first published online in Wiley Online Library
(wileyonlinelibrary.com): 9 May 2016
DOI 10.1002/ajmg.b. 32448
nominally associated $\left(P=5.28 \times 10^{-8}\right)$ in the primary analysis adjusting for psychiatric medication use and significantly associated with the GAD symptoms score in the analysis excluding medication users $\left(P=4.18 \times 10^{-8}\right)$. However, meta-analysis of the replication samples did not support this association. Although we identified a genome-wide significant locus in this sample, we were unable to replicate this finding. Evidence for heritability was also only detected for GAD symptoms, and not the trait anxiety measure, suggesting differential genetic influences within the domain of trait anxiety. © 2016 Wiley Periodicals, Inc.

Key words: genetic association study; anxiety; Hispanics/ Latinos

How to Cite this Article:

Dunn EC, Sofer T, Gallo LC, Gogarten SM, Kerr KF, Chen C-Y, Stein MB, Ursano RJ, Guo X, Jia Y, Qi Q, Rotter JI, Argos M, Cai J, Penedo FJ, Perreira K, WassertheilSmoller S, Smoller JW. 2017. GenomeWide Association Study of Generalized Anxiety Symptoms in the Hispanic Community Health Study/Study of Latinos.
Am J Med Genet Part B 174B:132-143.
identify genomic loci linked to GAD by conducting a genome-wide analysis of GAD symptoms. We used a dimensional measure of trait anxiety symptoms chosen to match DSM-5 criteria for GAD. Use of a dimensional measure enables an examination of the full range of quantitative variation, rather than extremes in this quantitative distribution (e.g., cases versus controls) and may be a statistically more powerful approach to identify variants associated with GAD [Plomin et al., 2009].

In this report, we present results from the first GWAS of GAD symptoms, where we found a genome-wide significant association between a SNP intronic to thrombospondin 2 (THBS2) and GAD symptoms in a large, diverse, and population-based sample of Hispanic/Latino adults. This finding did not replicate in a metaanalysis of three independent samples of Hispanic/Latino adults. We also present results from a SNP-chip heritability analysis, where we found evidence of modest heritability in GAD symptoms (7.2\%), but no statistically significant heritability for a broader measure of trait anxiety symptoms.

MATERIALS AND METHODS

Overview

The Hispanic Community Health Study/Study of Latinos (HCHS/ SOL) is a community-based prospective cohort study following 16,415 self-identified Hispanic/Latino adults (aged 18-74 at screening) and was designed to examine the distribution and determinants of chronic health conditions, including diabetes, pulmonary disease, and cardiovascular disease. As described elsewhere [Lavange et al., 2010], participants were recruited via a stratified two-stage area probability sample of households across four cities in the United States (Chicago, IL; Miami, FL; Bronx, NY; San Diego, CA). The majority of the sample self-identified with the following background groups: Central American ($\mathrm{n}=1,730$), Cuban ($\mathrm{n}=2,348$), Dominican ($\mathrm{n}=1,460$), Mexican ($\mathrm{n}=6,471$), Puerto Rican ($\mathrm{n}=2,728$), and South American ($\mathrm{n}=1,068$). Baseline examinations were conducted between 2008 and 2011. Institutional Review Boards at each field center approved the study and all participants provided written informed consent. In the current study, we analyzed data from 12,254 respondents who consented to provide blood for the purpose of genotyping and had complete outcome and relevant covariates information (to be described
later), as well as non-missing records of antianxiety and antidepressants medication use.

Phenotype Definition

Anxiety symptoms were assessed at baseline using a 10 -item Spielberger State-Trait Anxiety Inventory (STAI-T) administered in the participant's preferred language (Spanish or English) [Bromberger and Matthews, 1996; Bergua et al., 2015]. This a short form version of the 20 item STAI-T [Spielberger, 1989), which is a valid and commonly used measure of trait anxiety symptoms in population-based studies (see e.g.: [De Moor et al., 2006; Caravati-Jouvenceaux et al., 2011]) that has been shown to correlate highly with other anxiety measures [Spielberger and Reheiser, 2009]. The abbreviated 10 -item STAI-T short form has shown excellent internal consistency reliability in the full HCHS/SOL sample ($\alpha=0.93$) and for both the English ($\alpha=0.92$) and Spanish ($\alpha=0.94$) versions of the instrument [Wassertheil-Smoller et al., 2014]. It has been shown in other studies to correlate highly with the full version ($\alpha=0.96$) [Bromberger and Matthews, 1996]. For each item, participants were asked to indicate how they generally feel $(0=$ almost never; $1=$ sometimes; $2=$ often; $3=$ almost always). Using the STAI short form, we created a GAD symptoms score by summing the three items (i.e., feeling nervous or restless; worrying over things that don't matter; getting in a state of tension or turmoil as you think about recent concerns and interests) that are diagnostic criteria for GAD as defined by the DSM-5 [American Psychiatric Association, 2013]. The GAD symptoms score demonstrated moderate internal consistency reliability ($\alpha=0.70$) in the full $\mathrm{HCHS} / \mathrm{SOL}$ sample. For comparison, we also examined a total trait anxiety score based on summing responses to all 10 items (i.e., the three GAD symptom score items noted above plus the following seven items: I feel satisfied with myself; I lack self confidence; I feel secure; I feel inadequate; I am a steady person; I wish I could be as happy as others seem to be; I feel like a failure). Both phenotypes were coded so that higher scores indicated higher levels of anxiety.

To account for the possibility that current use of antidepressant or anxiolytic medications might affect anxiety scores, we applied an imputation algorithm to increase the scores of medication users. This algorithm was used in a previous GWAS of depressive symptoms [Hek et al., 2013] and was similar to an algorithm used to adjust blood pressure for persons on antihypertensive medications [Levy et al., 2000]. Antidepressant or anxiolytic medication use was determined by pill bottles brought by the participant to the baseline interview. Antidepressants were included, as this class of drugs are commonly prescribed to treat generalized anxiety symptoms [Kapczinskiet al., 2003; Milea et al., 2010]. This algorithm assumed that: (i) the anxiety score of a respondent taking these psychotropic medications is lower (i.e., indicating fewer symptoms) than would be expected if the respondent were not taking these medications (thus, we assume that the medications are effective in reducing symptoms); (ii) respondents with high anxiety scores, on average, respond less to these medications than respondents with lower anxiety scores. The algorithm therefore, replaced the anxiety score of respondents on medications ($\mathrm{n}=1,068$) with the mean anxiety score of all respondents taking these medications that had the
same or a higher anxiety score. For example, a medication user with an observed anxiety score of 10 would have a revised score of 21.07 (derived by taking the average anxiety score of medication users with an anxiety score value of 10 or greater). Anxiety scores for medication users were increased by 6.2 points on average above the raw score (raw scores ranged from 0 to 30).

SNP Genotyping, Quality Control, and Imputation

Blood samples from consenting respondents were sent to Illumina Microarray Services for genotyping on the Illumina SOL HCHS Custom 15041502 B3 array. This array comprised the Illumina Omni 2.5M array (HumanOmni2.5-8v1-1) and additional custom content (e.g., ancestry-informative markers, variants characteristic of Amerindian populations, known GWAS hits, and other candidate gene markers) selected for HCHS/SOL.

Quality assurance/quality control (QA/QC) was performed by Illumina, LA Biomed, and the HCHS/SOL Genetic Analysis Center (GAC) according to established methods [Laurie et al., 2010] to generate recommended SNP and sample-level quality filters. In brief, samples were checked for annotated versus genetic sex, gross chromosomal anomalies [Laurie et al., 2012], call rates, batch effects, duplicate sample discordance, Mendelian errors, population structure, and relatedness (note: participants could have been genetically related due to being drawn from the same household or different households living in the same community). Twelve thousand eight-hundred three unique study samples passed these criteria. SNPs that passed the Illumina/LA Biomed assay failure indicator were further checked for Hardy-Weinberg equilibrium, MAF, duplicate probe discordance, and missing call rate. A total of 2,232,944 SNPs passed both quality and informativeness filters (unduplicated on the array and polymorphic).

Genome-wide imputation was carried out on all 12,803 samples together using the 1000 Genomes Project phase 1 reference panel [1000 Genomes Project et al., 2012] and IMPUTE2 software [Howie et al., 2009, 2011]. Genotypes were first pre-phased with SHAPEIT2 (v2.r644) and then imputed with IMPUTE2 (v2.3.0). Only variants with at least two copies of the minor allele present in any of the four 1000 Genomes continental panels were imputed, yielding a total of $25,568,744$ imputed variants. Overall imputation quality was assessed both by looking at the distribution of imputed quality metrics by different MAF levels and by examining results from the IMPUTE2 internal masking experiments (as some genotyped variants were "masked," meaning removed from the imputation basis).

Principal components (PCs) and kinship coefficients were computed in an iterative manner to estimate both population structure and relatedness between study individuals such that the PCs were not affected by relatedness, and kinship estimates are not affected by ancestry. The process began with estimating relatedness using KING-robust [Manichaikul et al., 2010], followed by iterative estimation of PCs and kinship coefficients using PC-AiR [Conomos et al., 2015] and PC-Relate (https://www.bioconductor. org/packages/release/bioc/html/GENESIS.html), and is described comprehensively elsewhere [Conomos, 2014]. Consequently, 19 individuals who were identified to have primarily east Asian ancestry were excluded from analysis. For association analysis, the kinship
matrix was based on an independent set of SNPs selected with LD pruning.

Statistical Analyses

All analyses used a linear mixed-effect model, which accounted for the correlations between individuals due to genetic relatedness (kinship), shared household, and the complex sampling design [Conomos et al., 2016; Schick et al., 2016]. The variance components were estimated using restricted maximum likelihood (REML). Fixed effects included the covariates: \log (sampling weight), which reflect the differences in sampling probabilities of study individuals and is included to prevent potential selection bias; field center; age; sex; education ($1=$ no high school diploma or GED—referent; $2=$ at most a High school diploma or GED, $3=$ greater than high school or GED; $4=$ bachelors degree, $5=$ masters, professional, or doctorate degree); and the top five PCs of ancestry. SNP annotation was performed using ANNOVAR [Wang et al., 2010] (http://annovar. openbioinformatics.org/en/latest/).

Heritability Analysis

We estimated "SNP-chip heritability," or the narrow-sense heritability due to the additive effect of common variants (genotyped and imputed), by first fitting a "null" linear mixed model that included all covariates, PCs, and random effects, but did not include genotypes, and then calculating the proportion of variance attributable to relatedness out of all phenotypic variance [Conomos et al., 2016; Schick et al., 2016]. For this analysis, the kinship matrix was calculated based on PC-relate using all autosomal SNPs, and the model was fit on a set of 10,414 unrelated individuals by removing participants so that the unrelated set did not have first-, second-, or third-degree relatives [Yang et al., 2010]. We conducted this analysis examining the GAD symptoms score as well as the total trait anxiety score to evaluate and compare SNP-chip heritability estimates across these phenotypes.

GWAS Analysis

We performed a GWAS using the linear mixed-effect model approach. All SNPs were modeled additively and the standard 5×10^{-8} was used as the threshold for genome-wide statistical significance. In addition, we report the set of SNPs with P-value $<1 \times 10^{-6}$ according to the following selection criteria: out of SNPs
that were less than 500,000 base pairs apart, and their correlation was higher than 0.5 , we prioritized genotyped over imputed SNPs, we preferred imputed SNPs with higher quality score (info), lower P-values, and for SNPs with similar P-values and imputation quality score (or genotyped), we prioritized SNPs with higher MAF. Quantile-quantile (QQ) and Manhattan plots were generated using the R package GWASTools [Gogarten et al., 2012]. Regional association plots were generated using Locus Zoom [Pruim et al., 2010].

Secondary Analysis

As a secondary analysis, we repeated our analyses in the subset of non-medication users ($\mathrm{n}=11,456 ; 91.5 \%$ of the sample) and using an untransformed score that did not consider medication use (i.e., the raw phenotype score).

Replication

We attempted replication of these results using data from three independent cohorts. Additional details about these cohorts are presented in Supplemental Materials. Briefly, the Women's Health Initiative (The Women's Health Initiative Study Group, 1998, WHI; www.whi.org [Wassertheil-Smoller et al., 2004]) provided data on Hispanic/Latina women ($\mathrm{n}=3,352$; mean age 60.0; $\mathrm{SD}=$ 6.57), where anxiety symptoms were measured using a single item (i.e., have you been a very nervous person in the past four weeks). The Multi-Ethnic Study of Atherosclerosis (MESA; http://www. mesa-nhlbi.org) [Bild et al., 2002] provided data from Hispanic/ Latino adults ($\mathrm{n}=1,449$; mean age $61.38 ; \mathrm{SD}=10.30$) where anxiety symptoms were measured using a scale identical to the HCHS/SOL. Finally, the Army Study To Assess Risk and Resilience in Service members (Army STARRS; http://www.armystarrs.org) [Ursano et al., 2014] provided data from Hispanic/Latino adults ($\mathrm{n}=3,394$; mean age $=25.98 ; \mathrm{SD}=5.00$), where anxiety symptoms were captured using a five-item scale designed to match DSM-IV criteria for GAD.

We meta-analyzed GWAS results across the three independent samples. As we were interested in testing whether the direction of effect was the same in the replication (as the discovery), one sided P-values were used [Heller et al., 2015]. Inverse variance weighted fixed-effect meta-analysis was conducted using METAL (http://www.sph.umich.edu/csg/abecasis/metal/;[Willer et al., 2010]).

TABLE I. Results of Genome-Wide Complex Trait Analysis

	Original scores		Accounting for medication use		Medication users removed	
	$\mathrm{V}[\mathrm{G}] / \mathrm{p} \times 100$	P-values	$\mathrm{V}[\mathrm{G}] / \mathrm{p} \times 100$	P-values	$\mathrm{V}[\mathrm{G}] / \mathrm{Vp} \times 100$	P-values
GAD symptoms score	7.57	0.12	7.20	0.03	8.15	0.06
Total trait anxiety score	5.65	0.32	4.97	0.20	8.18	0.14

[^0]
Adjusting for Medication Use

Excluding Medication Users

FIG. 1. Quantile-quantile [$Q Q$] plots and Manhattan plots for GAD symptoms score from the Hispanic Community Health Study/Study of Latinos. The quantile-quantile plots [" 00 -plots"], which present the observed by expected P-values on the -log10 scale, indicate conformity of the observed results to what would be expected under the null. In the Manhattan plots, the x-axis is the chromosomal position and the y-axis is the - log10 P-value for the association between each SNP and the GAD symptoms score derived from the linear regression model. The dotted line shows the genome-wide significance level ($5 \times 10-8$). The displayed P-value corresponds to SNPs with effective $N>30$.

RESULTS

A total of 12,282 Hispanic/Latino respondents were in the analysis. As expected, the GAD symptom score (skew $=0.63$;
kurtosis $=2.48$) and total trait anxiety score (skew $=0.87$; kurtosis $=3.21)$ were skewed towards lower values. No transformations of the outcome were performed as linear regression is robust to minor violations of normality [van Belle, 2002].
TABLE II. Genome-Wide Association Study (GWAS) Results for the Top Loci ($P<1 \times 10^{-6}$) with the GAD Symptoms Score Imputed for Medication Use

Closest gene ($<\mathbf{2 0} \mathbf{k b}$)

CHR, chromosome. In the geno. (genotyping) column, G, genotyped and I, imputed. All imputed SNPs had info scores (indicating imputation quality) ≥ 0.70. AlleleA is the tested allele. Position is given in genome build GRCh37/hg19.
TABLE III. Genome-Wide Association Study (GWAS) Results for the Top Loci ($P<1 \times 10^{-6}$) with the GAD Symptoms Score, After Excluding Medication Users

FIG. 2. Regional association plot for the top SNP (rs78602344) identified in the analysis excluding medication users. The regional association plot was generated using LocusZoom [http://csg.sph.umich.edu/locuszoom/] The left-side y-axis refers to the -log of the P-value corresponding to the test of association between each SNP (denoted as a colored dot, if genotyped, or X , if imputed) and GAD symptoms. SNPs are colored based on the level of linkage disequilibrium (LD) between each SNP and the index, genotyped, SNP (purple diamond]. r2 values are determined based on the HCHS/SOL data.

Discovery Sample: SNP Heritability

As shown in Table I, the GAD symptom score showed evidence of modest heritability $\left(\mathrm{h}^{2}{ }_{\mathrm{SNP}}=7.2 \% ; P=0.03\right)$, while the total trait anxiety score did not $\left(\mathrm{h}^{2}{ }_{\mathrm{SNP}}=4.97 \% ; P=0.20\right)$. Building from these results, we conducted a GWAS only on the GAD symptom score.

Discovery Sample: GWAS

The Manhattan and QQ plots are shown in Figure 1. As shown in the QQ plots, there was no evidence of inflation in either the GWAS of the full sample or the analysis that excluded medication users ($\lambda=1.02$). No SNPs achieved genome-wide significance in the full sample, which included imputed scores for medication users (Table II). However, one genotyped SNP (rs78602344), located on chromosome six at position 169626581 , emerged from both analyses. This SNP was the second most significant result in the full sample ($P=1.41 \times 10^{-7}$) and the most significant result ($P=4.18$ $\times 10^{-8}$) in the analysis excluding medication users (Table III). The SNP is intronic to thrombospondin 2 (THBS2), a gene that mediates cell-to-cell and cell-to-matrix interactions. Several other SNPs in the region also showed support for association (Fig. 2).

A second SNP with a low P-value in both analyses was rs17729883 (full sample $P=7.29 \times 10^{-7}$; excluding medication
users $P=5.09 \times 10^{-7}$) located on chromosome eight. This genotyped SNP was located in an intron of an uncharacterized gene (LOC 106379231; Supplemental Fig. S1).

All GWAS results at $P<1 \times 10^{-5}$ are shown in the Supplemental Materials for the GAD symptom score for the full sample (Supplemental Table SI), excluding medication users (Supplemental Table SII), and for the original, non-transformed score (Supplemental Table SIII).

To determine which SNPs to carry forward for replication, we estimated replication power for all SNPs with P-values $<1 \times 10^{-6}$ in at least one of the two analyses according to our selection criteria detailed above. Replication power estimates were based on the projected samples sizes of each replication dataset $(\mathrm{WHI}=3,000 ; \mathrm{MESA}=1,500$; Army STARRS $=3,000$) and using MAF, outcome standard deviation, and estimated effect sizes from the discovery sample. Our power calculations incorporated a method [Zhong and Prentice, 2008] to reduce bias due to "winner's curse," effectively attenuating the observed effect size. A prior study showed that attenuated effect size estimates tend to be closer than uncorrected estimates to effects seen in independent replication studies [Zhong and Prentice, 2010].

Our power analysis suggested that one SNP [rs78602344) would have excellent power in a meta analysis of the three replication cohorts after the winner's curse bias correction (estimated power $=0.96)$; all other SNPs had weak power (≤ 0.70). We therefore carried forward this single SNP for replication.

Replication Samples: GWAS Results

In the replication phase, one SNP [rs78602344) was evaluated in three independent samples. This SNP was not significantly associated with the GAD symptom score in a meta analysis of the replication sites (Table IV).

DISCUSSION

The current study involved three major innovations in efforts to identify the genetic basis of generalized anxiety. First, to our knowledge, this was the first GWAS of GAD symptoms. Prior genetic association studies of GAD have focused on candidate gene polymorphisms, most of which have showed inconsistent results [Smoller, 2016]. Among GWAS, extant studies have focused on other anxiety disorders, including post-traumatic stress disorder [Guffanti et al., 2013; Logue et al., 2013; Xie et al., 2013] and panic disorder [Otowa et al., 2009, 2010; Erhardt et al., 2011], or have examined more global symptoms of trait anxiety in children [Trzaskowski et al., 2013] or composite indicators of anxiety disorder in adults [Otowa et al., 2014], but have not yet examined general symptoms of anxiety in adults. Second, our study was also the first to provide SNP-chip heritability estimates of GAD symptoms. Such analyses are important to provide upper- and lower-bound estimates of the additive genetic contribution to GAD. Finally, we conducted these genetic association analyses in Hispanics/Latinos, a large and growing US population group. Previous studies have largely focused on individuals of European ancestry.
A. Adjusting for medication use

	SNP	CHR	Position	AlleleA	AlleleB	MAF	Minor allele	Geno.	n	Beta	SE	P-value
Discovery	rs78602344	6	169626581	T	C	0.113	C	G	12,282	-0.26	0.05	$1.41 \mathrm{E}-07$
Army NSS1	rsp8602344	6	169626581	T	C	0.108	C	1	1,408	0.11	0.34	0.76
Army NSS2	rs78602344	6	169626581	T	C	0.111	C	I	453	1.38	0.68	0.04
Army PPDS	rsp8602344	6	169626581	T	C	0.108	C	I	1,533	0.17	0.30	0.57
MESA	rs78602344	6	169626581	T	C	0.133	C	1	1,441	0.02	0.06	0.73
WHI	rs9505953	6	108969803	C	T	0.206	T	I	2,950	-	0.04	0.54
Meta analysis				T	C				?,785	0.03	0.03	0.43
B. Excluding medication users												
	SNP	CHR	Position	AlleleA	AlleleB	MAF	Minor allele	Geno.	n	Beta	SE	P-value
Discovery	rs78602344	6	169626581	T	C	0.113	C	G	11,456	-0.27	0.05	4.18E-08
Army NSS1	rs78602344	6	169626581	T	C	0.108	C	1	1,372	0.11	0.34	0.74
Army NSS2	rs78602344	6	169626581	T	C	0.111	C	1	431	1.00	0.66	0.13
Army PPDS	rs78602344	6	169626581	T	C	0.108	C	1	1,430	-0.04	0.27	0.88
MESA	rs78602344	6	169626581	T	C	0.133	C	I	1,369	0.01	0.07	0.92
WHI	rs9505953	6	108969803	C	T	0.205	T	1	2,513	-0.01	0.04	0.77
Meta analysis				T	C				7,115	0.01	0.03	0.71

Two findings emerged from the current study. First, results from the SNP-chip heritability analysis suggested that about 7.2% of the variance in GAD symptoms was explained by common genetic variants. This SNP heritability estimate is lower than those found for phobic anxiety $\left(\mathrm{h}^{2}{ }_{\mathrm{SNP}}=21 \% ; P=0.01\right)$ [Walter et al., 2013] and anxiety sensitivity $\left(\mathrm{h}^{2}{ }_{\text {SNP }}=45 \% ; 95 \% \mathrm{CI}=32 \%\right.$, 56\%) [Davies et al., 2015] in adults, and also lower relative to estimates for a composite measure of anxiety traits in children, which was derived by summing measures of negative affect, negative cognition, fear, and social anxiety $\left(\mathrm{h}^{2}{ }_{\mathrm{SNP}}=16 \% ; P=0.07\right)$ [Trzaskowski et al., 2013]. The lower heritability estimates observed in this study relative to other studies conducted in adults may be due to the use of symptom scale, rather than a diagnostic measure of GAD. Interestingly, we also found that the total trait anxiety score, derived by summing all items on the scale (rather than just the three corresponding to GAD symptoms) carried no significant heritable signal. This result suggests that not all symptoms on existing anxiety scales may be equally influenced by additive genetic variation. Future studies using dimensional measures of anxiety symptoms may benefit from conducting similar analyses to determine whether an existing scale should be used in its entirety.

Second, we identified one genotyped SNP (rs78602344) located on chromosome six that was common to analyses accounting for psychiatric medication use or excluding medication users. Although not genome-wide significant in the former analysis, this SNP was genome-wide significant after excluding medication users $\left(P=4.18 \times 10^{-8}\right)$. This SNP is intronic to thrombospondin 2 (THBS2), a gene that mediates cell-to-cell and cell-to-matrix interactions. Several other SNPs in the region also showed support for association. However, this association was not supported in a meta-analysis of the three independent Hispanic/Latino replication samples ($n>7,000$). We suspect that GWAS of GAD symptoms will likely share a similar trajectory as depressive symptoms, where increasing larger sample sizes and refinement of the phenotype will lead to the identification of associated loci [CONVERGE Consortium, 2015; Dunn et al., 2015].

We note several limitations of the current study. First, the outcomes were based on a brief inventory of trait anxiety symptoms. Although the widespread use of this anxiety measure in population-based studies allowed us to carry out the current analyses, future studies of diagnostic measures of GAD as well as more robust measures of GAD symptoms (from more detailed and specific measures or repeated phenotyping) are needed. Second, the replication samples were smaller and both more demographically and phenotypically heterogeneous than the HCHS/ SOL discovery sample. Unfortunately, replication efforts are currently hampered by a lack of available data on anxiety symptoms in racial/ethnic minority populations. Third and relatedly, only one SNP was carried forward to the replication phase. This single SNP was the only one with high replication power. Moreover, greater insights are needed regarding the most optimal strategy to account for medication use in genetic association studies of quantitative traits. Future studies are needed to examine the suitability of different techniques and the extent to which different adjustment methods lead to different results (e.g., whether they substantially reduce variance if a substantial portion of the sample is assigned the
same score; whether empirical data, such as medication efficacy, can be used to inform the adjustment strategy).

In conclusion, although the GWAS revealed a genome-wide significant locus in the discovery sample, we were unable to replicate this in independent samples. These findings underscore the need for even larger studies of GAD symptoms.

ACKNOWLEDGMENTS

The Hispanic Community Health Study/Study of Latinos (HCHS/ SOL) was carried out as a collaborative study supported by contracts from the National Heart, Lung, and Blood Institute (NHLBI) to the University of North Carolina (N01- HC65233), University of Miami (N01-HC65234), Albert Einstein College of Medicine (N01HC65235), Northwestern University (N01-HC65236), and San Diego State University (N01-HC65237). The following Institutes/ Centers/Offices contribute to the HCHS/SOL through a transfer of funds to the NHLBI: National Institute on Minority Health and Health Disparities, National Institute on Deafness and Other Communication Disorders, National Institute of Dental and Craniofacial Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Neurological Disorders and Stroke, NIH Institution-Office of Dietary Supplements. MESA and the MESA SHARe project are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-001079, UL1-TR-000040, and DK063491. The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through contracts HHSN268201100046C, HHSN268201100001C, HHSN26 8201100002C, HHSN268201100003C, HHSN268201100004C, and HHSN271201100004C. The Army Study of Risk and Resilience in Servicemembers (Army STARRS) was sponsored by the Department of the Army and funded under cooperative agreement number U01MH087981 with the U.S. Department of Health and Human Services, National Institutes of Health, and National Institute of Mental Health (NIH/NIMH).

The contents are solely the responsibility of the authors and do not necessarily represent the views of the Department of Health and Human Services, the National Institutes of Health, the Veterans Administration, Department of the Army, or the Department of Defense.

The current study is supported the National Institute of Mental Health of the National Institutes of Health under Award Number K01MH102403 (Dunn) and K24MH094614 (Smoller), by a NARSAD Young Investigator Grant from the Brain \& Behavior Research Foundation (Dunn), and a Tepper Family MGH Research Scholar Award (Smoller).

The authors thank Sandy Li and Jenna Kiely for their assistance in conducting the literature search for this paper. The authors also thank the staff and participants of HCHS/SOL for their important contributions. A complete list of staff and investigators has been provided by Lavange et al. [2010] and is also available on the study website http://www.cscc.unc.edu/hchs/.

REFERENCES

American Psychiatric Association. 2013. Diagnostic and statistical manual of mental disorders. Arlington, VA: American Psychiatric Publishing.
Asnaani A, Richey JA, Dimaite R, Hinton DE, Hofmann SG. 2010. A crossethnic comparison of lifetime prevalence rates of anxiety disorders. J Nerv Mental Dis 198(8):551-555.
Bergua V, Meillon C, Potvin O, Ritchie K, Tzourio C, Bouisson J, Dartigues JF, Amieva H. 2015. Short STAI-Y anxiety scales: Validation and normative data for elderly subjects. Aging Ment Health 1-9. [Epub ahead of print].
Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, Greenland P, Jacob DR Jr., Kronmal R, Liu K, Nelson JC, O'Leary D, Saad MF, Shea S, Szklo M, Tracy RP. 2002. Multi-ethnic study of atherosclerosis: Objectives and design. Am J Epidemiol 156(9):871-881.
Bromberger JT, Matthews KA. 1996. A longitudinal study of the effects of pessimism, trait anxiety, and life stress on depressive symptoms in middle-aged women. Psychol Aging 11(2):207-213.
Brown A. 2014. U.S. Hispanic and Asian populations growing, but for different reasons. http://www.pewresearch.org/fact-tank/2014/06/26/u-s-hispanic-and-asian-populations-growing-but-for-different-reasons/
Caravati-Jouvenceaux A, Launoy G, Klein D, Henry-Amar M, Abeilard E, Danzon A, Pozet A, Velten M, Mercier M. 2011. Health-related quality of life among long-term survivors of colorectal cancer: A population-based study. Oncologist 16:1626-1636.
Conomos MP. 2014. Inferring, estimating and accounting for population and pedigree structure in genetic analyses. PhD , University of Washington.
Conomos MP, Laurie CA, Stilp AM, Gogarten SM, McHugh CP, Nelson SC, Sofer T, Fernandez-Rhodes L, Justice AE, Graff M, Young KL, Seyerle AA, Avery CL, Taylor KD, Rotter JI, Talavera GA, Daviglus ML, Wassertheil-Smoller S, Schneiderman N, Heiss G, Kaplan RC, Franceschini N, Reiner AP, Shaffer JR, Barr RG, Kerr KF, Browning SR, Browning BL, Weir BS, Aviles-Santa ML, Papanicolaou GJ, Lumley T, Szpiro AA, North KE, Rice K, Thornton TA, Laurie CC. 2016. Genetic diversity and association studies in US Hispanic/Latino populations: Applications in the Hispanic Community Health Study/Study of Latinos. Am J Hum Genet 98(1):165-184.
Conomos MP, Miller MB, Thorton TA. 2015. Robust inference of population structure for ancestry prediction and correction of stratification in the presence of relatedness. Genet Epidemiol 39(4):276-293.

CONVERGE Consortium. 2015. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 523(7562):588-591.

Davies MN, Verdi S, Burri A, Trzaskowski M, Lee M, Hettema J M, Jansen R, Boomsma DI, Spector TD. 2015. Generalised anxiety disorder-A twin study of genetic architecture, genome-wide association and differential gene expression. PLoS ONE 10(8):e0134865.
De Moor MH, Beem AL, Stubbe JH, Boomsma DI, De Geus EJ. 2006. Regular exercise, anxiety, depression and personality: A populationbased study. Prev Med 42(4):273-279.

Dunn EC, Brown RC, Dai Y, Rosand J, Nugent NR, Amstadter AB, Smoller JW. 2015. Genetic determinants of depression: Recent findings and future directions. Harv Rev Psychiatry 23(1):1-18.
Erhardt A, Czibere L, Roeske D, Lucae S, Unschuld PG, Ripke S, Specht M, Kohli MA, Kloiber S, Ising M, et al. 2011. TMEM132D, a new candidate for anxiety phenotypes: Evidence from human and mouse studies. Mol Psychiatry 16(6):647-663.
1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA. 2012. An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56-65.

Gogarten SM, Bhangale T, Conomos MP, Laurie CA, McHugh CP, Painter I, Zheng X, Crosslin DR, Levine D, Lumley T, Nelson SC, Rice K, Shen J, Swarnkar R, Weir BS, Laurie CC. 2012. GWASTools: An R/Bioconductor package for quality control and analysis of genome-wide association studies. Bioinformatics 28(24):3329-3331.
Grant BF, Hasin DS, Stinson FS, Dawson DA, Ruan WJ, Goldstein RB, Smith SM, Saha TD, Huang B. 2005. Prevalence, correlates, co-morbidity, and comparative disability of DSM-IV generalized anxiety disorder in the USA: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. Psychol Med 35:1747-1759.
Guffanti G, Galea S, Yan L, Roberts AL, Solovieff N, Aiello AE, Smoller JW, De Vivo I, Ranu H, Uddin M, et al. 2013. Genome-wide association study implicates a novel RNA gene, the lincRNA AC068718.1, as a risk factor for post-traumatic stress disorder in women. Psychoneuroendocrinology 38(12):3029-3038.
Hek K, Demirkan A, Lahti J, Terracciano A, Teumer A, Cornelis MC, Amin N, Bakshis E, Baumert J, Ding J, Liu Y, Marciante K, Meirelles O, Nalls MA, Sun YV, Vogelzangs N, Yu L, Bandinelli S, Benjamin EJ, Bennett DA, Boomsma D, Cannas A, Coker LH, de Geus E, De Jager PL, DiezRoux AV, Purcell S, Hu FB, Rimm EB, Hunter DJ, Jensen MK, Curhan G, Rice K, Penman AD, Rotter JI, Sotoodehnia N, Emeny R, Eriksson JG, Evans DA, Ferrucci L, Fornage M, Gudnason V, Hofman A, Illig T, Kardia S, Kelly-Hayes M, Koenen K, Kraft P, Kuningas M, Massaro JM, Melzer D, Mulas A, Mulder CL, Murray A, Oostra BA, Palotie A, Penninx B, Petersmann A, Pilling LC, Psaty B, Rawal R, Reiman EM, Schulz A, Shulman JM, Singleton AB, Smith AV, Sutin AR, Uitterlinden AG, Volzke H, Widen E, Yaffe K, Zonderman AB, Cucca F, Harris T, Ladwig KH, Llewellyn DJ, Raikkonen K, Tanaka T, van Duijn CM, Grabe HJ, Launer LJ, Lunetta KL, Mosley TH Jr., Newman AB, Tiemeier H, Murabito J. 2013. A genome-wide association study of depressive symptoms. Biol Psychiatry 73(7):667-678.
Heller R, Bogomolov M, Benjamini Y, Sofer T. 2015. Testing for replicability in a follow-up study when the primary study hypotheses are twosided. http://arxiv.org/abs/1503.02278.
Hettema JM, Neale MC, Kendler KS. 2001. A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am J Psychiatry 158:1568-1578.
Hoffman DL, Dukes EM, Wittchen HU. 2008. Human and economic burden of generalized anxiety disorder. Depress Anxiety 25(1):72-90.
Hoge EA, Ivkovic A, Frichione GL. 2012. Generalized anxiety disorder: Diagnosis and treatment. Br Med J 345:37500.

Howie BN, Donnelly P, Marchini J. 2009. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5(6):e1000529.
Howie BN, Marchini J, Stephens M. 2011. Genotype imputation with thousands of genomes. G3 (Bethesda) 1:457-470.
Kapczinski FFK, Silva de Lima M, dos Santos Souza JJSS, Batista Miralha da Cunha AABC, Schmitt RRS. 2003. Antidepressants for generalized anxiety disorder. Cochrane Database Syst Rev 2:CD003592.
Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. 2005a. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62(6):593-602.
Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. 2005b. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62(6):617-627.
Laurie CC, Doheny KF, Mirel DB, Pugh EW, Bierut LJ, Bhangale T, Boehm F, Caporaso NE, Cornelis MC, Edenberg HJ, Gabriel SB, Harris EL, Hu FB, Jacobs KB, Kraft P, Landi MT, Lumley T, Manolio TA, McHugh C, Painter I, Paschall J, Rice JP, Rice KM, Zheng X, Weir BS, Investigators G.
2010. Quality control and quality assurance in genotypic data for genome-wide association studies. Genet Epidemiol 34(6):591-602.
Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR, McHugh CP, Ling H, Hetrick KN, Pugh EW, Amos C, Wei Q, Wang LE, Lee JE, Barnes KC, Hansel NN, Mathias R, Daley D, Beaty TH, Scott AF, Ruczinski I, Scharpf RB, Bierut LJ, Hartz SM, Landi MT, Freedman ND, Goldin LR, Ginsburg D, Li J, Desch KC, Strom SS, Blot WJ, Signorello LB, Ingles SA, Chanock SJ, Berndt SI, Le Marchand L, Henderson BE, Monroe KR, Heit JA, de Andrade M, Armasu SM, Regnier C, Lowe WL, Hayes MG, Marazita ML, Feingold E, Murray JC, Melbye M, Feenstra B, Kang JH, Wiggs JL, Jarvik GP, McDavid AN, Seshan VE, Mirel DB, Crenshaw A, Sharopova N, Wise A, Shen J, Crosslin DR, Levine DM, Zheng X, Udren JI, Bennett S, Nelson SC, Gogarten SM, Conomos MP, Heagerty P, Manolio T, Pasquale LR, Haiman CA, Caporaso N, Weir BS. 2012. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 44(6):642-650.

Lavange LM, Kalsbeek WD, Sorlie PD, Aviles-Santa LM, Kaplan RC, Barnhart J, Liu K, Giachello A, Lee DJ, Ryan J, Criqui MH, Elder JP. 2010. Sample design and cohort selection in the Hispanic Community Health Study/Study of Latinos. Ann Epidemiol 20(8):642-649.

Levy D, DeStefano AL, Larson MG, O’Donnell CJ, Lifton RP, Gavras H, Cupples LA, Myers RH. 2000. Evidence for a gene influencing blood pressure on chromosome 17: Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham Heart Study. Hypertension 36(4):477-483.

Logue MW, Baldwin C, Guffanti G, Melista E, Wolfe EJ, Reardon AF, Uddin M, Wildman D, Galea S, Koenen KC, Miller MW. 2013. A genome-wide association study of post-traumatic stress disorder identifies the retinoid-related orphan receptor alpha (RORA) gene as a significant risk locus. Mol Psychiatry 18(8):937-942.
Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. 2010. Robust relationship inference in genome-wide association studies. Bioinformatics 26(22):2867-2873.
Milea D, Verpillat P, Guelfucci F, Toumi M, Lamure M. 2010. Prescription patterns of antidepressants: Findings from a US claims database. Curr Med Res Opin 26(6):1343-1353.
Moffitt TE, Caspi A, Taylor A, Kokaua J, Milne BJ, Polanczyk G, Poulton R. 2010. How common are common mental disorders? Evidence that lifetime prevalence rates are doubled by prospective versus retrospective ascertainment. Psychol Med 40:899-909.

Newman MG, Llera SJ, Erickson TM, Przeworski A, Castonguay LG. 2013. Worry and generalized anxiety disorder: A review and theoretical synthesis of evdience on nature, etiology, mechanisms, and treatment. Annu Rev Clin Psychol 9:275-297.
Otowa T, Maher BS, Aggen SH, McClay JL, van den Oord EJ, Hettema JM. 2014. Genome-wide and gene-based association studies of anxiety disorders in European and African American samples. PLoS ONE 9(11):e112559.
Otowa T, Tanii H, Sugaya N, Yoshida E, Inoue K, Yasuda S, Shimada T, Kawamura Y, Tochigi M, Minato T, et al. 2010. Replication of a genomewide association study of panic disorder in a Japanese population. J Hum Genet 55(2):91-96.

Otowa T, Yoshida E, Sugaya N, Yasuda S, Nishimura Y, Inoue K, Tochigi M, Umekage T, Miyagawa T, Nishida N, et al. 2009. Genome-wide association study of panic disorder in the Japanese population. J Hum Genet 54(2):122-126.
Passel JS, Cohn DV, Lopez MH. 2011. Census 2010: 50 million Latinos, Hispanics account for more than half of nation's growth in past decade, Pew Research Center. Pew Hispanic Center.

Plomin R, Haworth CM, Davis OS. 2009. Common disorders are quantitative traits. Nat Rev Genet 10:872-878.

Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ. 2010. LocusZoom: Regional visualization of genome-wide association scan results. Bioinformatics 26(18):2336-2337.

Schick UM, Jain D, Hodonsky CJ, Morrison JV, Davis JP, Brown L, Sofer T, Conomos MP, Schurmann C, McHugh CP, Nelson SC, Vadlamudi S, Stilp A, Plantinga A, Baier L, Bien SA, Gogarten SM, Laurie CA, Taylor KD, Liu Y, Auer PL, Franceschini N, Szpiro A, Rice K, Kerr KF, Rotter JI, Hanson RL, Papanicolaou G, Rich SS, Loos RJ, Browning BL, Browning SR, Weir BS, Laurie CC, Mohlke KL, North KE, Thornton TA, Reiner AP. 2016. Genome-wide association study of platelet count identifies ances-try-specific loci in Hispanic/Latino Americans. Am J Hum Genet 98(2):229-242.
Shimada-Sugimoto M, Otowa T, Hettema JM. 2015. Genetics of anxiety disorders: Genetic epidmeiological and molecular studies in humans. Psychiatry Clin Neurosci 69(7):388-401.
Smoller JW. 2016. The genetics of stress-related disorders: PTSD, depression, and anxiety disorders. Neuropsychopharmacology 41(1):297-319.
Spielberger CD. 1989. State-trait anxiety inventory: Bibliography, 2nd edition. Palo Alto, CA: Consulting Psychologists Press.
Spielberger CD, Reheiser EC. 2009. Assessment of emotions: Anxiety, anger, depression, and curiosity. Appl Psychol Health Well Being 1(3):271-302.
Stein MB, Sareen J. 2015. Clinical practice. Generalized anxiety disorder. N Engl J Med 373(21):2059-2068.
Trzaskowski M, Eley TC, Davis OS, Doherty SJ, Hanscombe KB, Meaburn EL, Haworth CM, Price T, Plomin R. 2013. First genome-wide association study on anxiety-related behaviours in childhood. PLoS ONE 8(4): e58676.
Ursano RJ, Colpe LJ, Heeringa SG, Kessler RC, Schoenbaum M, Stein MB, Army STARRS Collaborators. 2014. The Army study to assess risk and resilience in servicemembers (Army STARRS). Psychiatry 77(2):107-119.
van Belle G. 2002. STRUTS: Statistical rules of thumb. New York, NY; John Wiley and Sons.
Walter S, Glymour MM, Koenen K, Liang L, Tchetgen Tchetgen EJ, Cornelis M, Chang SC, Rimm E, Kawachi I, Kubzansky LD. 2013. Performance of polygenic scores for predicting phobic anxiety. PLoS ONE 8(11):e80326.
Wang K, Li M, Hakonarson H. 2010. ANNOVAR: Functional annotation of genetic variants from next-generation sequencing data. Nucleic Acids Res 38(3):e164.
Wassertheil-Smoller S, Arredondo E, Cai J, Castenada S, Choca JP, Gallo L, Jung M, LaVange LM, Lee-Rey ET, Mosley T Jr., Penedo FJ, Santistaban D, Zee P. 2014. Depression, anxiety, antidepressant use, and cardiovascular disease among Hispanic men and women of different ethnic backgrounds: Results from the Hispanic Community Health Study/ Study of Latinos (HCHS/SOL). Ann Epidemiol 11:822-830.
Wassertheil-Smoller S, Shumaker S, Ockene J, Talavera GA, Greenland P, Cochrane B, Robbins J, Aragaki A, Dunbar-Jacob J. 2004. Depression and cardiovascular sequela in postmenopausal women: The Women's Health Initiative (WHI). Arch Intern Med 164:289-298.
Willer CJ, Li Y, Abecasis GR. 2010. METAL: Fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26(17):2190-2191.
Wittchen HU, Jacobi F. 2005. Size and burden of mental disorders in Europe: A critical review and approaisal of 27 studies. Eur Neuropsychopharmacol 357-376.
Wittchen HU, Jacobi F, Rehm J, Gustavsson A, Svensson M, Jonsson B, Olesen J, Allgulander C, Alonso J, Faravelli C, Fratiglioni L, Jennum P, Lieb R, Maercker A, van Os J, Preisig M, Salvador-Carulla L, Simon R, Steinhausen HC. 2011. The size and burden of mental disorders and
other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 21(9):655-679.
The Women's Health Initiative Study Group. 1998. Design of the women's health initiative clinical trial and observational study. The Women's Health Initiative Study Group. Control Clin Trials 19:61-109.
Xie P, Kranzler HR, Yang C, Zhao H, Farrer LA, Gelernter J. 2013. Genome-wide association study identifies new susceptibility loci for posttraumatic stress disorder. Biol Psychiatry 74(9):656-663.
Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin NG, Montgomery GW, Goddard ME, Visscher PM. 2010. Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42(7):565-569.

Zhong H, Prentice RL. 2008. Bias-reduced estimators and confidence intervals for odds ratios in genome-wide association studies. Biostatistics 9(4):621-634.

Zhong H, Prentice RL. 2010. Correcting "winner's curse" in odds ratios from genomewide association findings for major complex human diseases. Genet Epidemiol 34(1):78-91.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article at the publisher's web-site.

Supplemental Materials

Genome-Wide Association Study of Depressive Symptoms in the Hispanic Community Health Study/Study of Latinos

Table of Contents

Description of Discovery and Replication Samples: Sampling, Genotyping, Phenotypes, and Statistical Analyses

A. Hispanic Community Health Study/Study of Latinos (HCHS/SOL) 3
B. Women's Health Initiative (WHI) SNP Health Association Resource (SHARe) 5
C. Multi-Ethnic Study of Atherosclerosis (MESA) 6
D. Army Study To Assess Risk and Resilience in Service members (Army STARRS) 6
Description of Depressive Symptoms in Each Sample. 9
Supplemental Table 1: Results of genome-wide complex trait analysis 11
Supplemental Table 2: Genome-wide association study (GWAS) results for the top loci ($\mathrm{p}<1 \mathrm{x} 10-5$) with the depressive symptom score, after adjusting for medication use. 12
Supplemental Table 3: Genome-wide association study (GWAS) results for the top loci ($\mathrm{p}<1 \mathrm{x} 10-5$) with the depressive symptom score, after excluding medication users 18
Supplemental Table 4: Genome-wide association study (GWAS) results for the top loci ($\mathrm{p}<1 \mathrm{x} 10-6$) with the original depressive symptom score 26
Supplemental Table 5: Replication results from top loci on chromosome 7: rs34208798 32
Supplemental Table 6: Replication results from top loci on chromosome 19: rs2004237 33
Supplemental Table 7: Genome-wide association study (GWAS) results for the top loci ($\mathrm{p}<1 \mathrm{x} 10-5$) with the depressive symptom score, after adjusting for medication use, among females 34
Supplemental Table 8: Genome-wide association study (GWAS) results for the top loci ($\mathrm{p}<1 \mathrm{x} 10-6$) with the depressive symptom score, after excluding medication users, among females 35
Supplemental Table 9: Genome-wide association study (GWAS) results for the top loci ($\mathrm{p}<1 \mathrm{x} 10-5$) with the depressive symptom score, after adjusting for medication use, among males 36
Supplemental Table 10: Genome-wide association study (GWAS) results for the top loci ($\mathrm{p}<1 \times 10-6$) with the depressive symptom score, after excluding medication users, among males 37
Supplemental Table 11: Replication results from top loci on chromosome 8 in females: rs 72662446 38
Supplemental Table 12: Replication results from top loci on chromosome 17 in males: rs9709324 39
Supplemental Table 13: Replication results from top loci on chromosome 8 in males: rs6993028 40
Supplemental Table 14: Replication results from top loci on chromosome 19 in males: rs 144850488 41
Supplemental Table 15: Replication results from top loci on chromosome 19 in males: rs113403132 42
Supplemental Figure 1. Quantile-quantile (QQ) plots and Manhattan plots for binary depressive symptoms score from the Hispanic Community Health Study/Study of Latinos 43
Supplemental Table 16: Genome-wide association study (GWAS) results for the top loci ($\mathrm{p}<1 \times 10-6$) with the with the binary depressive symptom. 44

Supplemental Table 17: Associations between GRSs constructed on three discovery GWAS and depressive
symptom scores in the HCHS/SOL 45
Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium Authorship 47
References 54

Description of Discovery and Replication Samples: Sampling, Genotyping, and Statistical Analyses

A. Hispanic Community Health Study/Study of Latinos (HCHS/SOL)

The Hispanic Community Health Study (HCHS)/Study of Latinos (SOL) is a community-based prospective cohort study of 16,415 self-identified Hispanic/Latino persons (aged 18-74 at screening) from randomly selected households in four U.S. field centers (Chicago, IL; Miami, FL; Bronx, NY; San Diego, CA) with baseline examination (2008 to 2011) and yearly follow-up by telephone for at least three years. A second clinical exam is currently underway. The HCHS/SOL cohort includes participants who self-identified as having Hispanic/Latino background, who reported being Central American ($\mathrm{n}=1,730$), Cuban ($\mathrm{n}=2,348$), Dominican ($\mathrm{n}=1,460$), Mexican ($\mathrm{n}=6,471$), Puerto-Rican ($\mathrm{n}=2,728$), and South American ($\mathrm{n}=1,068$). The goals of the HCHS/SOL are to describe the prevalence of risk and protective factors for chronic conditions (such as diabetes, pulmonary disease, and cardiovascular disease), and to quantify mortality and disease exacerbation over time. The baseline clinical examination 1 included comprehensive biological (e.g., anthropometrics, blood draw, oral glucose tolerance test, ankle brachial pressure index, electrocardiogram), behavioral (e.g. dietary intake, physical activity, overnight sleep exam, tobacco and alcohol use), and socio-demographic (e.g., socioeconomic status, migration history) assessments.

The sample design and cohort selection has been previously described 2. Briefly, a stratified two-stage area probability sample of household addresses was selected in each of the four field centers. The first sampling stage selected census block groups, and the second stage selected households within each block group. Both stages oversampled certain strata to increase the likelihood that a selected address yielded a Hispanic/Latino household. Households were screened for eligibility, and the 45-74 age group was oversampled, consistent with the goal of examining chronic disease and mortality outcomes. The unequal probabilities of selection in the HCHS/SOL cohort are taken into account by including a trimmed and calibrated sampling weight as a covariate in the association tests.

HCHS/SOL subjects who consented to have their DNA extracted for genetic studies had blood samples sent to Illumina Microarray Services for genotyping on the Illumina SOL HCHS Custom 15041502 B3 array. This array comprised the Illumina Omni 2.5 M array (HumanOmni2.5-8v1-1) and additional custom content selected for HCHS/SOL, including ancestry-informative markers, variants characteristic of Amerindian populations, known GWAS hits, and other candidate gene markers. Quality assurance/quality control (QA/QC) was performed by Illumina, LA Biomed, and the HCHS/SOL Genetic Analysis Center (GAC) according to established methods 3 to generate recommended SNP and sample-level quality filters. In brief, samples were checked for annotated versus genetic sex, gross chromosomal anomalies 4, call rates, batch effects, duplicate sample discordance, Mendelian errors, relatedness, and population structure. 12,803 unique study samples passed quality control with a missing call rate $<1 \%$ and was used for imputation and association testing. SNPs that passed the Illumina/LA Biomed assay failure indicator were further filtered if they deviated from HardyWeinberg equilibrium ($\mathrm{p}<10-5$ in meta-analysis of groups of individuals with both parents from the same country of origin), had duplicate probe discordance >2 in 291 sample pairs, had missing call rate $>2 \%$, or had >3 Mendelian errors in 1,343 trios or duos. A total of 2,232,944 SNPs passed both quality and informativeness filters (unduplicated on the array and polymorphic)

Genome-wide imputation was carried out on all 12,803 samples together using the 1000 Genomes Project phase 1 reference panel 5 and IMPUTE2 software 67 . Genotypes were first pre-phased with SHAPEIT2 (v2.r644) and then imputed with IMPUTE2 (v2.3.0). Only variants with at least two copies of the minor allele present in any of the four 1000 Genomes continental panels were imputed, yielding a total of 25,568,744 imputed variants. Overall imputation quality was assessed both by looking at the distribution of imputed quality metrics by different MAF levels and by examining results from the IMPUTE2 internal masking experiments (as some genotyped variants were "masked", meaning removed from the imputation basis). Finally, association analysis
results were filtered according to the "effective minor allele count," defined as $2 \mathrm{p}(1-\mathrm{p}) \mathrm{Nv}$, where p is the estimated MAF, N is the sample size, and v is the imputation measure "oevar," which is equal to the ratio of observed variance of imputed dosages to the expected binomial variance. For genotyped SNPs, oevar is set to 1.

The following approach was used to simultaneously characterize population structure and relatedness between individuals within sub-populations, in the presence of admixed individuals.

1. Estimate relatedness using KING-robust 8, which is robust to discrete population structure but not to admixture or departures from HWE within sub-populations.
2. Use PC-AiR9 to find ancestry-representative principal components with the following steps:
a) Partition the sample into a mutually unrelated set and the remaining (relatives of the unrelated set)
b) Perform standard principal components analysis (PCA) on the set of unrelated individuals
c) Predict sample eigenvectors for the set of related individuals based on genetic similarity
3. Re-estimate relatedness using PC-Relate 10 , which uses sample eigenvectors to provide unbiased kinship coefficients in the presence of population structure, admixture and HWE departures.
4. Repeat steps 2-3 to obtain final sets of sample eigenvectors and kinship coefficients.

This procedure identified 19 individuals with primarily East Asian ancestry, who were excluded from analysis and the above procedure was repeated for the remaining 12,784 samples.

To account for the possibility that current use of antidepressant medications might affect depressive symptoms scores, we applied an adjustment algorithm to increase the scores of medication users. This algorithm was used in a previous GWAS of depressive symptoms 11 and was similar to an algorithm used to adjust blood pressure for persons on antihypertensive medications 12. Antidepressant medication use was determined by pill bottles brought by the participant to the baseline interview, which were scanned using UPC codes. This algorithm assumed that: (1) the depressive symptoms score of a respondent taking these antidepressant medications is lower (i.e., indicating fewer symptoms) than would be expected if the respondent were not taking these medications (thus, we assume that the medications are effective in reducing symptoms); and (2) respondents with high depressive symptoms scores, on average, respond less to these medications than respondents with lower depressive symptoms scores. The algorithm therefore replaced the depressive symptoms score of respondents on antidepressant medication ($\mathrm{n}=824$) with the mean depressive symptoms score of all respondents taking medication that had the same or a higher depressive symptoms score. For example, a medication user with an observed depressive score of 10 would have a revised score of 16.749 (derived by taking the average depressive symptoms score of medication users with a depressive symptom score value of 10 or greater). Depressive symptoms scores for medication users were increased by 6.37 points on average above the raw score (raw scores ranged from 0-30).

Details regarding the distribution of covariates in the total sample and stratified by gender and psychiatric medication use are included below.

Table 1. Distribution of covariates in the total sample and stratified by gender and psychiatric medication users

	Total Sample	Sex		Medication Use	
		Males	Females	User	Non-User
n	12310	5046	7264	824	11486
Age (mean, sd)	$46(14)$	$45(14)$	$47(14)$	$53(11)$	$46(14)$
Male	$5046(41 \%)$	-	-	$214(26 \%)$	$4832(42 \%)$
Medication use	$824(7 \%)$	$214(4 \%)$	$610(8 \%)$	-	-
US born	$2194(18 \%)$	$980(19 \%)$	$1214(17 \%)$	$153(19 \%)$	$2041(18 \%)$
Education					
At least high school	$3146(26 \%)$	$1400(28 \%)$	$1746(24 \%)$	$186(23 \%)$	$2960(26 \%)$
No high school diploma or GED	$4518(37 \%)$	$1789(35 \%)$	$2729(38 \%)$	$341(41 \%)$	$4177(36 \%)$
Greater than high school	$3255(26 \%)$	$1237(25 \%)$	$2018(28 \%)$	$215(26 \%)$	$3040(26 \%)$
Bachelors degree	$1008(8 \%)$	$451(9 \%)$	$557(8 \%)$	$54(7 \%)$	$954(8 \%)$
Masters/professional/	$383(3 \%)$	$169(3 \%)$	$214(3 \%)$	$28(3 \%)$	$355(3 \%)$
doctorate degree					
Genetic Group	$1371(11 \%)$	$555(11 \%)$	$816(11 \%)$	$56(7 \%)$	$1315(11 \%)$
Central American	$895(7 \%)$	$359(7 \%)$	$536(7 \%)$	$29(4 \%)$	$866(8 \%)$
South American	$4580(37 \%)$	$1802(36 \%)$	$2778(38 \%)$	$236(29 \%)$	$4344(38 \%)$
Mexican	$2141(17 \%)$	$900(18 \%)$	$1241(17 \%)$	$258(31 \%)$	$1883(16 \%)$
Puerto Rican	$2219(18 \%)$	$1046(21 \%)$	$1173(16 \%)$	$174(21 \%)$	$2045(18 \%)$
Cuban	$1104(9 \%)$	$384(8 \%)$	$720(10 \%)$	$71(9 \%)$	$1033(9 \%)$
Dominican					

Cell entries are $\mathrm{N}(\%)$ unless otherwise denoted.

B. Women's Health Initiative (WHI) SNP Health Association Resource (SHARe)

As described elsewhere 1314 (www.whi.org), the WHI consists of an observational study (WHI-OS) and randomized clinical trial (WHI-CT). The WHI-OS has prospectively followed 93,676 postmenopausal women ages 50-79 recruited from 40 clinical centers in the United States between October 11993 and December 31 1998. The WHI-CT enrolled 68,132 postmenopausal women of the same age and between the same time period to participate in one of three prevention trials: (1) hormone therapy; (2) dietary modification; and (3) calcium/vitamin D. We analyzed data from 3,352 Hispanic women who were genotyped as part of the WHI SNP Health Association Resource (SHARe), a sub-study of minority women in WHI. These women consented to be included in studies for general research use and thus had their data included in the database of Genotypes and Phenotypes (dbGaP).

All participants were genotyped using the Affymetrix 6.0 chip designed to human genome build 36.
Genotyping, on all samples plus 2% blinded duplicates, was performed at Affymetrix, Inc., Santa Clara, CA. A total of 709,042 SNPs passed pre-imputation filters. Data cleaning and harmonization were performed at the Fred Hutchinson Cancer Research Center (FHCRC) in Seattle, WA. As described elsewhere 15, the WHI GARNET Coordinating Center (Www.garnetstudy.org) imputed additional SNPs using the 1000 Genomes reference panel build 37 (release December 2010 interim) and BEAGLE software version 3.3.1 16. SNPs were selected for imputation based on mapping to build 37 and meeting several quality filters. Specifically, SNPs with low concordance rates ($<98 \%$ ascertained from duplicate samples), and low call rates ($<95 \%$) were excluded from imputation and SNPs with minor allele frequency (MAF) of $\geq 1 \%$ and Hardy-Weinberg
equilibrium p-values >0.0001 were included. A combined panel of Asian, European, African, and American samples was used to impute the Hispanic/Latina sample. Allele dosages (the probability of each of the three genotypes, reflecting the level of certainty in the genotype prediction) were imputed for autosomes $(7,500,448$ imputed SNPs) and the X chromosome.

In the analysis of WHI, we adjusted for the following covariates, measured at baseline: age (ages 50-59referent; ages 60-69; ages 70-79), income ($1=$ less than 19,000-referent; $2=20,000-49,000 ; 3=50,000$ and above; $4=$ missing), education ($1=$ less than high school-referent; $2=$ high school/vocational technical training; $3=$ some college or Associates degree; $4=$ college degree; $5=$ graduate school or degree; $6=$ missing), marital status ($1=$ never married-referent; $2=$ divorced/separated; $3=$ widowed; $4=$ married $/$ married like relationship; $5=\mathrm{missing}$), and four principal components generated by the WHI GARNET Coordinating Center using EIGENSTRAT 17 to adjust for population structure 15 .

C. Multi-Ethnic Study of Atherosclerosis (MESA)

The MESA is a multicenter prospective cohort study initiated to study the development of subclinical cardiovascular disease (CVD). A total of 6,814 women and men between the age of 45 and 84 year were recruited for the first examination between 2000 and 2002. Participants were recruited in six US cities (Baltimore, MD; Chicago, IL; Forsyth County, NC; Los Angele County, CA; Norther Manhattan, NY; and St. Paul, MN). Those with a history of CVD (defined as physician-diagnosed myocardial infarction, angina, heart failure, stroke, transient ischemic attack or history of invasive procedure for CVD) were excluded from participation. 38% are of European ancestry, 28% African-American, 22% Hispanic, and 12% Asian, predominantly of Chinese descent. This study was approved by the IRB of each study site, and written informed consent was obtained from all participants 18 . The manuscript utilizes data from Hispanic-American MESA participants. A total of 1500 MESA Hispanic-Americans were used in this analysis.

All participants were genotyped on the Affymetrix Genome-Wide Human SNP Array 6.0 (Affymetrix, Santa Clara, CA, USA) at the Affymetrix Research Services Lab. 6880 samples passed initial genotyping QC. African American samples were genotyped at the Broad Institute of Harvard and MIT as part of the CARe project. Affymetrix performed wet lab hybridization assay, and plate-based genotype calling using Birdseed v2. Sample QC was based on call rates and contrast QC (cQC) statistics. Broad performed similar QC for CARe sample. Additional sample and SNP QC were carried out at University of Virginia, including sample call rate, sample cQC, and sample heterozygosity by race at the sample level; Outlier plates checking by call rate, median cQC or heterozygosity at plate level. Four samples were removed due to low call rate ($<95 \%$). Cryptic sample duplicates or unresolved cryptic duplicates were dropped. Unresolved gender mismatches were also dropped. At the SNP level, we excluded monomorphic SNPs across all samples; SNPs with missing Rate was $>5 \%$ or observed heterozygosity $>53 \%$ were also excluded. Additional genotypes were imputed to the 1000 Genomes Phase I integrated variant set (NCBI build $37 / \mathrm{hg} 19$) separately in each ethnic group using the program IMPUTE2. We used data freezes from 23 Nov 2010 (low-coverage whole-genome) and 21 May 2011 (highcoverage exome), phased haplotypes released March 2012 (v3), and phased haplotypes for 1,092 individuals and $39+$ million variants. All imputed and genotyped SNPs were aligned to the ' + ' strand of the human genome reference sequence (NCBI Build 37).

In the analysis of MESA, we adjusted for the following covariates measured at baseline: gender ($1=$ male, $2=$ female), age (treated as continuous), education ($1=$ less than high school-referent; 2=high school/vocational technical training; $3=$ some college or Associates degree; $4=$ college degree; $5=$ graduate school or degree; $6=$ missing), study site ($3=\mathrm{WFU} ; 8=\mathrm{UCLA} ; 4=\mathrm{COL} ; 6=\mathrm{UMN} ; 5=\mathrm{JHU} ; 7=\mathrm{NWU}$), antidepressant medication (nontricyclic antidepressants other than MAOI $1=y e s ~ 0=n o$) and three principal components generated to adjust for population structure.
D. Army Study To Assess Risk and Resilience in Service members (Army STARRS)

Army STARRS includes New Soldier Study (NSS) and Pre/Post Deployment Study (PPDS). Detailed information about the design and conduct of Army STARRS is available in another publication. 19. The recruitment, consent, and data protection procedures were approved by the Human Subjects Committees of the Uniformed Services University of the Health Sciences for the Henry M. Jackson Foundation (the primary grantee), the Institute for Social Research at the University of Michigan (the organization collecting the data), and all other collaborating organizations.

The New Soldier Study was carried out among new soldiers at the start of their basic training at one of three Army Installations (Fort Benning, GA; Fort Jackson, SC; and Fort Leonard Wood, MO) between April 2011 and November 2012. Recruitment began by selecting a weekly sample of 200-300 new soldiers in each installation to attend a study overview and informed consent presentation for the study. Army STARRS staff worked closely with Army coordinators to assure that these samples were representative of all new soldiers in each weekly cohort. The overview and informed consent presentation explained study purposes, confidentiality, emphasized that participation was voluntary, and answered all questions before seeking written informed consent to (i) complete a self-administered questionnaire (SAQ), (ii) link administrative records to SAQ responses, and (iii) participate in future data collections. Identifying information (e.g., name, SSN) was collected from consenting respondents and kept in a separate secure file. Soldiers were also asked to provide an optional blood sample for research purposes, which was specified to include genetic analysis as described in this report. Of 39,784 NSS respondents who completed the SAQ, 33,088 (83.2%) provided blood samples. As these samples were accruing, it was decided to pursue genotyping from among approximately the first half ($\mathrm{N}=$ 17,868) of the cohort that was available at that time; we refer to this component of the study as NSS1. The first 17,868 eligible respondents were purposively subsampled for genotyping as follows: (1) respondents with DSM-IV lifetime disorders of principal interest (major depressive disorder, generalized anxiety disorder, panic disorder, PTSD, suicide attempt, other deliberate self-harm) sampled at $100 \%[\mathrm{~N}=4,024]$; and (2) a subset of respondents with none of the disorders of principal interest, stratum-matched on sex, service type (Regular Army vs. Guard/Reserve), and childhood adversity quartile (detailed description available on request from the authors) [$\mathrm{N}=3,975$]. In total this yielded 7,999 NSS respondents with eligible SAQ responses genotyped with the Illumina OmniExpress Chip (NSS1). When the remaining half $(\mathrm{N}=15,220)$ of the cohort collection was completed, it was decided to select a highly informative subset (i.e., all cases of PTSD and suicide attempt, and a set of controls matched to these cases as described above for NSS1) as a potential replication sample. This yielded an additional 2,835 NSS respondents genotyped with the Illumina customized PsychChip; we refer to this component of the study as NSS2.

The Pre/Post Deployment Study is a multi-wave panel survey that collected baseline data (T0; self-administered questionnaire [SAQ]) from US Army soldiers in three Brigade Combat Teams (BCTs) during the first quarter of 2012, within approximately six weeks of their deployment to Afghanistan. Baseline PPDS respondents were additionally asked for consent to provide blood samples for genetic and other studies, to link their Army and DoD administrative records to their survey responses, and to participate in future assessments. At the baseline (T0), a total of 9,949 Soldiers were present for duty in the 3 BCTs . Of these, a total of $9,488(95.3 \%)$ consented to participate in the survey with $8,558(86.0 \%)$ providing complete T0 survey responses and consent to link their survey responses to their administrative records. Of these, 7,336 PPDS soldiers with eligible SAQ responses whose DNA was genotyped for GWAS (using the same microarray as for NSS1) are included here.

Blood for DNA (approximately 8 ml drawn in a 10 ml EDTA-containing tube) was drawn from consenting soldiers in all studies. Whole blood samples were shipped with gel cool packs to the study biorepository at Rutgers University Cell \& DNA Repository (RUCDR), where they were frozen for later DNA extraction using standard methods. NSS1 and PPDS samples were genotyped using the Illumina OmniExpress + Exome array with additional custom content. This array contains 730,000 tag SNPS with minor allele frequency (MAF) typically $>5 \%$ and another 237,000 predicted-functional exonic markers. NSS2 samples were genotyped on the Ilumina PsychChip. This array is currently being used by the PGC to genotype more than 100,000 individuals across a range of psychiatric disorders. PsychChip is built on a 250,000 GWAS tag-SNP backbone, with 250,000 exonic rare variants and $\sim 50,000$ markers derived partly from prior neuropsychiatric studies. Samples
were genotyped by RUCDR Infinite Biologics using the appropriate Illumina (OmniExpress or PsychChip) microarray protocol and calls were made using GenomeStudio Software (Illumina, Inc.).

Pre-imputation quality control (QC) of genotype data was done with standard protocols as described elsewhere 20. Genotype imputation was performed with a 2-step pre-phasing/imputation approach. We used SHAPEIT 21 for the pre-phasing and IMPUTE2 22 for imputation, with a reference panel from 1000 Genomes Projects (August 2012 phase 1 integrated release; 2,186 phased haplotypes with $40,318,245$ variants). We removed SNPs that were not present in the 1000 Genomes Project reference panel, had non-matching alleles to 1000 Genome Project reference, or with ambiguous, unresolvable alleles (AT/GC SNPs with minor allele frequency [MAF] > 0.1). A total of 664,457 SNPs for the Illumina OmniExpress array and 360,704 for the Illumina PsychChip entered the imputation.

We assigned our study samples into distinct population groups based on PCs derived from the study samples combined with the HapMap3 samples. We used an iterative process to extract study samples to be assigned into groups with ancestral backgrounds close to the major continental/admixed reference samples from HapMap3. We defined four major population groups in our study samples: European Americans, African Americans, Latino Americans, and East Asian Americans. The Latino American samples were included in the current study. We performed PCA within the population group using only the study samples to obtain the top PCs for statistical analysis.

We adjusted for the following covariates in the current analysis: gender, age, endorsed medication for mental health problems in the past year ($1=$ yes, $0=$ no or missing) and 10 principal components generated to adjust for population structure. The 3 study components (NSS1, NSS2 and PPDS) were analyzed separately.

The SNPs rs34208798 and rs2004237 were imputed in Army STARRS with imputation info scores of 0.97-1.08 and 0.87-0.94 respectively.

Description of Depressive Symptoms in Each Sample

Table II below summarizes the individual items used to capture depressive symptoms across each of the replication studies. The table is organized by the HCHS/SOL indicators to show where similar items were assessed across each replication study.

WHI
Depressive symptoms were assessed using the 6-item version of the CES-D. Participants were asked to indicate how often in the past week, did they: (1) feel depressed; (2) have sleep that was restless; (3) enjoy life; (4) have crying spells; (5) feel sad; (6) feel people disliked you. The 6-item CES-D has been found to correlate with the full 20 -item CES-D ($\mathrm{r}=0.88$) 23 in participants of the Systolic Hypertension in the Elderly Program (SHEP) 24 , a population of elderly women similar to that of the WHI. Response options were: $1=$ rarely or none of the time (less than 1 day); $2=$ some or a little of the time (1-2 days); $3=$ occasionally or a moderate amount of time (3-4 days); $4=$ all the time (5-7 days). Depressive symptom scores were calculated by summing across the items.

MESA

For the replication in MESA, depressive symptoms were assessed using the 20 -item version of the CES-D 25 . Participants were asked how often in the past week they: (1) were bothered by things that usually don't bother me; (2) did not feel like eating/appetite was poor; (3) felt that I could not shake off the blues even with help from my family; (4) felt I was just as good as other people; (5) had trouble keeping my mind on what I was doing; (6) felt depressed; (7)felt everything I did was an effort; (8) felt hopeful about the future; (9) thought my life had been a failure; (10) felt fearful; (11) sleep was restless; (12) was happy; (13) talked less than usual; (14) felt lonely; (15) people were unfriendly; (16) enjoyed life; (17) had crying spells; (18) felt sad; (19) felt people disliked me; (20) could not get going. Responses ranged from $0=$ rarely or none of the time (less than 1 day) to $3=$ all the time (5-7 days); items (4), (8), (12), and (16) were reverse scored. For participants with 5 or fewer missing items, depressive scores were computed by summing across the completed items, dividing by the total number of complete answers, and multiplying by 20.

Army STARRS

Depressive symptoms were measured with a four-item Composite International Diagnostic Interview Screening Scale (CIDI-SC) for major depressive episode (MDE), which included the items: (1) feeling sad or depressed; (2) down about how things are going; (3) little or no pleasure in things; (4) feeling down on yourself or worthless in the past 30 days 26 . Responses ranged from $4=$ all the time to $0=$ none of the time. Depressive symptom scores were calculated as the sum of the four items (range $0-16$).

HCHS/SOL	MESA	Army STARRS	WHI
I was bothered by things that usually don't bother me.	**		
I had trouble keeping my mind on what I was doing.	**		
I felt depressed.	**	Felt sad or depressed	**
I felt that everything I did was an effort.	**		
I felt hopeful about the future.	**	Felt down on yourself, worthless	
I felt fearful.	**		
My sleep was restless.	**		**
I was happy.	**		
I felt lonely.	**		
I could not "get going."	**	Little or no interest or pleasure in things	
	I enjoyed life.		I enjoyed life.
	I had crying spells.		I had crying spells.
	I felt sad.	Down about how things are going	I felt sad.
	I felt that people disliked me.		I felt that people disliked me.
	I felt that I could not shake off the blues even with help from my family.		
	I did not feel like eating; my appetite was poor		
	I felt that I was just as good as other people.		
	I thought my life had been a failure.		
	I talked less than usual.		
	People were unfriendly.		
** denotes item worded identically to the HCHS/SOL			

Supplemental Tables

Supplemental Table 1: Results of genome-wide complex trait analysis

	Original scores			Accounting for medication use			Medication users removed		
Depressive symptoms score	N	$\begin{gathered} \mathrm{V}(\mathrm{G}) / \mathrm{Vp} \mathrm{p}^{*} 100 \\ (95 \% \mathrm{CI}) \end{gathered}$	p	N	$\begin{gathered} \mathrm{V}(\mathrm{G}) / \mathrm{Vp} \mathrm{p}^{*} 100 \\ (95 \% \mathrm{CI}) \end{gathered}$	p	N	$\begin{gathered} \mathrm{V}(\mathrm{G}) / \mathrm{Vp} \mathrm{p}^{*} 100 \\ (95 \% \mathrm{CI}) \end{gathered}$	p
All individuals	12310	$6.4(1.6,11.1)$	0.002	12310	6.3 (1.6, 11.1)	0.002	11486	$6.9(2.3,12)$	0.002
Unrelated individuals	9992	$4(0,10.1)$	0.082	9992	2.9 (0, 8.9)	0.153	9396	3.8 (0, 10.3)	0.104
$\mathrm{V}(\mathrm{G}) / \mathrm{Vp} * 100=$ SNP heritability estimate $\left(h_{2 S N P}\right)^{*} 100$. The phenotype was treated as continuous. Models adjusted for sex, age, education (5-levels), principal components, study center, and sampling weights, and included random effects for the design variables kinship, household, and block unit, the three study design variables. P-values were calculated using the likelihood ratio test. For completeness, we show these results for both all individuals (included in the GWAS) and genetically unrelated individuals. Genetically unrelated individuals were a random subset of individuals with pairwise estimated kinship coefficients less than 2-11/12.									

\mathcal{E} ¢8．0Z8E	90－g9¢ ${ }^{-}$	S0I＇0	26t＊${ }^{-}$	$666^{\circ} 0$	0IEZI	0	6I＇0	\bigcirc	\square	\bigcirc	0Z0LSc99	L	EI6IILZS．
七て8．028E	90－日9¢「て	S0I＇0	26t＊${ }^{-}$	I	0IEZI	0	$61^{\circ} 0$	V	V	\bigcirc	9t8SSS99	L	LSIE9SILS．I
カヤ¢＊0Z8E	90－GZS＇乙	SOL＇0	\＆6t＊ 0^{-}	6660°	0IEてI	0	6I＇0	\bigcirc	\bigcirc	L	L0E0Sc99	L	ャ\＆99てZ0［ S．I
ILS．0Z8E	90－日IS ${ }^{-3}$	SOL＇0	\＆6t＊ 0^{-}	$666^{\circ} 0$	0IEてI	0	$61^{\circ} 0$	L	L	\bigcirc	Lヵ\＆ऽSc99	L	696t8t8てS．I
SSt゙0Z8E	90－日8tて	SOL＇0	\＆6t＊ 0^{-}	$666^{\circ} 0$	0IEてI	0	6I＇0	\bigcirc	\bigcirc	V	て8てZS¢99	L	Sc9IEZ0［S．I
6てt゚0て8を	90－ヨ8tて	SOL＇0	\＆6t＊ 0^{-}	$666^{\circ} 0$	0IEてI	0	$61^{\circ} 0$	V	V	\square	0LEISS99	L	カ8LカカILIS．I
とが0て8を	90－日8がて	SOL＇0	\＆6t＊${ }^{-}$	$666^{\circ} 0$	0IEてI	0	$61^{\circ} 0$	V	V	\bigcirc	L0カISS99	L	96¢EEEZIS．I
80で 186 I	90－马¢ع＇乙	¢SIO 0	6てL＇0	I	0IEてI	τ	60.0	V	\bigcirc	V	て66S8て8E	I I	StてZ9tIS．」
LI6 ${ }^{\circ} 6 \mathrm{LE}$	90－马¢E゙て	¢0I＇0	$96 *^{\circ} 0^{-}$	$666^{\circ} 0$	0IEてI	0	6I＇0	\bigcirc	\bigcirc	L	9てELS¢99	L	てEEI98ELES．I
910ても¢\＆	90－日しでて	I I ${ }^{\circ} 0$	9ZS ${ }^{-}$	E660	0IEてI	0	91＊0	V	V	\bigcirc	8IISI999	L	009LELEIIS．
L9＊8II9		80.0	$08 \mathcal{E}^{\circ} 0^{-}$	$866^{\circ} 0$	60\＆てI	0	$9 \downarrow^{\circ} 0$	\bigcirc	\bigcirc	L	ャ6と98て08	七	をカ9てもてZS．
8¢．09LE	90－ $990{ }^{\circ}$ 亿	901＊0	E0S 0^{-}	［66．0	0IEてI	0	6I＇0	L	L	V	9IStIS99	L	St9808LS．
とて6t00てL	90－79L＇I	$9 \varepsilon て ゙ 0$	8てI＇I	で8 0	0IEてI	0	E0\％	L	\bigcirc	L	8ZILS92S	9I	ItttçLIIS．I
¢ES $908 \mathcal{E}$	90－3［9＊${ }^{\circ}$	¢0I＇0	t0¢ 0	6660	0IEてI	0	6I＇0	V	\bigcirc	V	It99IS99	L	06Lてもて01 S．I
	90－G8t I	90100	IIS ${ }^{-}$	9860	0IEてI	0	6I＇0	\bigcirc	\bigcirc	L	0ャ96¢¢99	L	てZELLLS¢S．I
をカ6＊${ }^{\circ} 9$ LE	90－ヨ ${ }^{-3}$	SOL＇0	$\angle 0 S^{\circ} 0^{-}$	$666^{\circ} 0$	0IEてI	0	$61^{\circ} 0$	V	V	\bigcirc	IS88IS99	L	86L80てちをS．I
Lて9＊E08E	90－ヨカガ I	S0I＇0	90¢ 0^{-}	I	0IEてI	0	$61^{\circ} 0$	V	V	\bigcirc	80んtIS99	L	L0カカEZ0IS．I
60カでしてを	90－3IE＇I	¢9E0	ャ9 ${ }^{\circ} \mathrm{I}^{-}$	¢660	60\＆てI	0	100	L	L	V	E80099EII	I I	ャ9ャ¢688EIS．
とで668を	90－ヨ6でI	E0I＇0	$860^{\circ} 0$	I	0IEてI	τ	2.0	L	L	\bigcirc	StS9069	9	ILも86IてIS．I
Lてで66LE	90－日9で	¢0I＇0	$60 S^{\circ} 0^{-}$	I	0IEてI	0	$61^{\circ} 0$	V	V	\bigcirc	ャ6ESIS99	L	stて8EZ015．
IS0．66LE		SOL＇0	$60 S^{\circ} 0^{-}$	I	0IEてI	τ	$61^{\circ} 0$	\bigcirc	\bigcirc	L	ャI9SIS99	L	80\＆8てZ0［ S．I
カ6¢ $808 \mathcal{E}$	90－日91＊I	SOL＇0	0 IS $^{\circ} 0^{-}$	$666^{\circ} 0$	0IEてI	0	$61^{\circ} 0$	V	V	\bigcirc	ャI9EIS99	L	LL9I9LIIS．I
$\dagger 0 L \cdot \varepsilon \downarrow て$	90－G¢［1］	6It＊	$980{ }^{\circ}{ }^{\text {－}}$	2L60	0IEてI	0	100	\bigcirc	\bigcirc	L	68S¢6ELL	9I	29t86［ LS．
8It゙9S8E	90－日で「1	SOL＇0	60¢ 0^{-}	¢660	0IEZI	0	6I＇0	\bigcirc	\bigcirc	\bigcirc	8ZS¢IS99	L	I0L89Z0IS．I
Lヤ0²S6E	90－3［ ${ }^{\text {－}}$－	t0I＇0	80¢ ${ }^{\circ}{ }^{-}$	ES60	0IEてI	0	Iで0	V	V	LV	810t9¢99	L	V：LV：8I0t9¢99：L
\＆9t［ $80 \downarrow$		LIE0	$97 ¢^{\prime} \mathrm{I}$	60	0IEZI	0	20\％	L	DL	L	0 LZZ0stて	0 O	9E0It8SS．
9¢てE゙IE9	90－300＊	カ¢で0	てもでI	［96．0	0IEてI	0	E0\％	V	V	L	9L6t6t99	εI	カヤ066S6S．I
と0＊19Lも	L0－GSL．6	$660{ }^{\circ}$	L8t＊ 0	$\varepsilon 68^{\circ} 0$	0IEZI	0	$8 て ゙ 0$		$\forall \supset \bigcirc$	\bigcirc	6tI60て6を	ς	Z8EZIL9SS．I
カ8¢「59L	L0－G －$^{-} 0^{\circ} 6$	て\＆で0	8\＆I＇I－	I	60\＆てI	τ	$\mathcal{E} 0^{\circ}$	L	L	\bigcirc	98IEII6S	8	9カヤて99てLS．I
E8Z5 6LZ	L0－̇¢9＇て	て6E0	LI0で	86.0	0IEZI	0	100	\bigcirc	\bigcirc	V	\＆908\＆てZ0I	てI	D：VD：ع908\＆てZ0I：ZI
It08．08て	L0－ －$^{\text {cozでて }}$	て6¢ 0	6て0で	LL6 0	0IEてI	0	10.0	V	V	\square	てZELEてZ0I	ZI	V：D：てZ\＆L\＆てZ0I：てI
9て6L・て8て	L0－ －$^{\text {c }} 0^{\circ}$ 「	$6 \underbrace{\circ} 0$	ャて0＇で	［86．0	0IEZI	0	100	L	L	\bigcirc	899SってZ0I	てI	
NHつ	${ }^{\mathrm{P}}$ 人d	日S	セł2	OJu！	U	Оนขอิ	JVW	$\begin{aligned} & \text { əગIIV } \\ & \text { Iou! } W \end{aligned}$	¢गРІ®	V ${ }^{\text {PVIE }}$	UO！！	とHP	dNS

LZ90tS6s
L09
96I0
†L9ELZ0IS．
$\varepsilon \varsigma$
t¢IE9¢ILS．
$0 \downarrow$ ¢8LIL9 ${ }^{\text {S．}}$
E982S86¢S．I
L08
七て
0ヶ9
£Z6IILZS．ı
9 9I
018
08Et6LLS．I
86
6 6もて
IEZL08Ls．
91
$0 ヤ L \varepsilon 8$
てI88て
$8+$
IL
896てZてEIS．
ャ8て£ZIZ9s．
69¢LS69s．
L0tZ8LLS．
9ISI9LIIS．
$60 \downarrow$ L8LLS．
てE682Z0IS．I
$0 \downarrow$ ¢†L6¢¢s．I
¢8It66¢¢s．I

 N

rs2292143
rs67737819
rs10269571
rs55704136
rs10249716
rs11524606
rs35913158
rs28857233
rs17144710
rs58942690
rs12698557
rs10825348
rs7800350
rs151216651
rs6975866
rs55731089
rs58756282
rs10224763
rs10249587
rs2049831
rs10925309
rs2154265
rs11314136
rs1445962
rs7793589
rs78316461
rs10259711
rs34157075
rs12154876
rs17438468
rs2242648
rs6973836
rs79295862
rs7783157
rs13243892
rs143925771
rs71535636

 000000000000000000000000000000000000 N N్心N

LISELZZ99．I
£9E89L0［S．I
乙IEZ60IS．I
¢006tIZIIS．I
9t9でてZS．．
I8S8ZSEャ［S．I
t9 ¢ $886{ }^{\text {S．}}$ ．
£とIt920【S．I
£Z96tIELS．
8tZI0¢0IS．
9680IL［［ S．
L0t8S6Es．
00IE68LLS．I
0999tEZ9S．I
8L6SIIS力IS．I
696StE9Ss．I
6ILELSIOZS．I

 rs77927049 Eヵ8L00LS．
LEZZZ6ELS．I $\vec{\omega}$
\vdots
0
\vdots
\cdots
∞ －
à
oे
oे
 0 IL6EISIIS． rs 148893024
rs2242642 $\overrightarrow{0}$
U
N
0
0
+
+
+

 $\begin{array}{ll}\overrightarrow{0} & \overrightarrow{0} \\ 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \\ 0 & 0 \\ 0 & \infty \\ 0 & \infty\end{array}$ rs8127353 rs7003790

 N

$$
\begin{gathered}
\hline L \\
L \\
\mathrm{~V} \\
Ð \\
\mathrm{O} \\
\mathrm{~V} \\
\mathrm{~V} \\
\mathrm{~L} \\
\mathrm{D} \\
\mathrm{D} \\
\mathrm{~V} \\
\text { ODVL } \\
\mathrm{V} \\
\text { D } \\
\mathrm{V} \\
\text { ODVOLO }
\end{gathered}
$$ $00 \mathrm{~s} 8 \mathrm{ZI9L}$ S． 99E990Is．${ }^{\text {s．}}$ S9E990IS．${ }^{\text {s．}}$ t9E9901s． ZIsz80Is．

 19E990［ ${ }^{\mathrm{s} .}$ ． rs 1066360 6SE990［s． rs 1066358

$$
\begin{aligned}
& \text { LLDVDLLDD } \\
& \text { LLDVDDDV }
\end{aligned}
$$ V：DV：08LI6s80I：ZI OOVL：L：t6でI686：\＆

 60¢Z80Is．I rs 140015087 OLLOVDLLOOLLDV MOVL DDOV：V：¢IZLLLI6：ZI 12：102270520：T：C
rs1082507

EセE！1686 081I6S801 カ6でさ686
 ZZ891686 £tIL8ILて 91777215
 86tIzzos II6Z0686 £E066886 3
0 0 V Ω 0 $2>$ V $\dashv \xrightarrow[~]{~}$ $\dashv \square$ \rightarrow $\cap \rightarrow \supset O$ T
T
\qquad ？

$$
\begin{aligned}
& \text { G } \\
& \text { T }
\end{aligned}
$$AN

G T

$$
>
$$V

L

$$
Q \Omega>
$$

$$
\dashv \Omega
$$

$$
0
$$

068＊${ }^{\circ} 8$ \％s	L0－ヨtI「6	080 0	£6E＊0	¢660	98tII	0	$9 \varepsilon^{\circ} 0$	V	V	\bigcirc	2616078	6I	8をてち00てS．．
てE6．98をS	L0－GIS＊8	$8 \angle 0^{\circ} 0$	S8E＊0	I	98tII	乙	$8 \varepsilon^{\circ} 0$	L	L	\bigcirc	てZ080Z8	6 I	0 I88¢¢09s．ı
カ69＊カャレt	L0－ －$_{\text {¢ }}$ 0 8	E80 0	てIt＊ 0 －	$678{ }^{\circ} 0$	98tII	0	Et＊0	VVL	L	VVL	0とてもt00L	L	L09［190［ ${ }^{\text {S．I }}$
Z9LOLZS	L0－ヨZ6\％	$080{ }^{\circ}$	L6E＊0	£660	98tII	0	$9 \varepsilon^{\circ} 0$	\bigcirc	ODV	V	t9980z8	6 I	D⿹V
								DVPDLV	OYLV				D⿹LV：V：t9980z8：6I
6IL＊6を9を	L0－ $0^{-} L^{\circ} \mathrm{L}$	$860^{\circ} 0$	S8t＊ 0^{-}	8660	98tII	0	$07^{\circ} 0$	L	L	\bigcirc	七ILIS9¢99	L	てI88てZ0【s．
8L8＊ 29 EE	L0－ヨZE．L	10100	105 0^{-}	9860	98tII	0	6100	\bigcirc	\bigcirc	L	0t96¢c99	L	てZELLL¢ss．
	L0－马¢8＊9	$080{ }^{\circ}$	$86 \varepsilon^{\circ} 0$	¢660	98tII	0	$9 \varepsilon^{\circ} 0$	\bigcirc	\bigcirc	L	9068078	6 I	8LEZSてLS．．
\＆80＊I8てS	L0－389＊9	$080{ }^{\circ}$	$86 \varepsilon^{\circ} 0$	S660	98tII	0	$9 \varepsilon^{\circ} 0$	Dワ	〇〇	\bigcirc	6¢980z8	6I	ว๑：ワ：6¢980て8：6I
8L9＊9LtS	L0－ヨ¢ع．9	6 LO 0	て68＊0	966.0	98tII	0	$6 \varepsilon^{\circ} 0$	\bigcirc	\bigcirc	DVP	6ISIIZ8	6I	I89L¢ISEs．
819＊¢IS	L0－Gt8 ${ }^{\circ}$	$997^{\circ} 0$	$0 \varepsilon \varepsilon^{*} \mathrm{I}^{-}$	E86．0	98tII	0	2000	\bigcirc	\bigcirc	L	0んtE869t	9	L00て9て0tis．s
$0 \downarrow$ ¢゙っLZS	L0－ヨcz＇s	$080{ }^{\circ}$	20t＊ 0^{-}	E660	98tII	0	$9 \varepsilon^{\circ} 0$	\bigcirc	L	\bigcirc	ESc90z8	6I	LEZZZ6ELs．s
6LS＊060E	L0－ $0^{-31} \mathrm{I}^{\circ} \mathrm{S}$	90100	ZES 0^{-}	E660	98tII	0	9100	V	V	\bigcirc	8LISI999	L	009LELEIIS．${ }^{\text {a }}$
89E＊9LヵE	L0－ 0^{-30} S	2010	LOC＇0－	I66．0	98tII	0	$61^{\circ} 0$	L	L	V	9IStIS99	L	St9808 ${ }^{\text {S．I }}$
900＊8I¢E	L0－GI0｀	001．0	E0S ${ }^{\circ}$	666.0	98tII	0	$61^{\circ} 0$	V	\bigcirc	V	It991599	L	06LてもZ0I ${ }^{\text {S．}}$
686＊29¢E	L0－马S6 ${ }^{\circ}$	$00{ }^{\circ} 0$	IOC＇0－	¢66．0	98tII	0	61．0	\bigcirc	\bigcirc	\bigcirc	8ZS¢IS99	L	I0L89Z0I S．
ャて6＊029	L0－ヨ6¢ ${ }^{\circ}$	$860{ }^{\circ}$	$96 *^{\circ} 0$	I	98tII	乙	$07^{\circ} 0$	L	L	\bigcirc	StS9069	9	ILt86IZIS．．
IEE＊SISE	L0－ヨยย゙ャ	$00{ }^{\circ} 0$	90¢ 0^{-}	1	98tII	0	6100	V	V	\bigcirc	80んtIS99	L	L0tt¢Ez0［s．s
¢LİIてカS	L0－ヨIt＊	6200	て0t＊ 0	1	98tII	τ	$8 \varepsilon^{\circ} 0$	\bigcirc	\bigcirc	V	IEZをIZ8	6I	6tIE099s．．
カャI＇ZIs\＆	L0－391 ${ }^{\circ} \mathrm{E}$	001 ${ }^{\circ} 0$	ZIS＊0－	I	98tII	0	6100	V	V	\bigcirc	カ6ESIS99	L	Stz8EZ01 ${ }^{\text {S．I }}$
L96＊IISE	L0－ヨย ${ }^{\circ} \mathrm{E}$	$00{ }^{\circ} 0$	ZIS＊${ }^{-}$	1	98tI I	τ	$61^{\circ} 0$	\bigcirc	\bigcirc	L	ャI9SIS99	L	80E8ZZ0IS．I
$69 t^{\circ}$ ¢¢9E	L0－ヨ90®	$660^{\circ} 0$	80¢＊0－	ES6．0	98tII	0	Iで0	V	V	LV	8L0t9¢99	L	V ：LV：810t9 999：L
986＊0Z¢E	L0－ヨSt ${ }^{\text {－}}$	001．0	915＊0－	6660	98tII	0	6100	V	V	\bigcirc	七I9EIS99	L	LL9I9LII ${ }^{\text {S．I }}$
ttc＊9LE	L0－ 0^{-186} I	ع0E＊0	LLS ${ }^{\text {I }}$	6.0	98tII	0	20.0	L	ĐL	L	0 IZZ0Sカて	02	9E0It8¢s．．
$6 \mathrm{IZ゙き8t} \mathrm{\varepsilon}$	L0－ $0^{-18}{ }^{\text {P }}$ I	001＊0	EZS ${ }^{-}{ }^{-}$	6660	98tII	0	$61^{\circ} 0$	V	V	\bigcirc	IS88IS99	L	86L80でちEs．
6\＆8．819	L0－GLI ${ }^{\text {a }}$	¢Ez゙0	$9 \downarrow て ゙ \mathrm{I}$	¢ 18.0	98tII	0	E0．0	\bigcirc	LOLV	\bigcirc	てL068tt $冖$	02	£9E6IZLLs．${ }^{\text {S }}$
									OLOD				
									DVP3				
LE6．ZSZ	L0－390＇I	LLE＇0	S00＇で	$86^{\circ} 0$	98tII	0	1000	\bigcirc	\bigcirc	VD	E908\＆zzoI	ZI	Đ：Vワ：¢908\＆ZZ0I：ZI
919＊＊6t	80－ヨI6\％	E80 0	でt＊ 0	666°	98tII	0	IE 0	L	L	\bigcirc	06¢EIZ8	6I	ILLEI8Es．．
9LI＇tくZ	80－ヨZど8	LLE＊0	Iて0で	LL6 0	98tII	0	100	V	V	\bigcirc	てZELEてZ01	ZI	V：口：てZELEてZ0ı：で
8L6．0E6t	80－ $389^{\circ} \mathrm{L}$	E80 0	Stt＊ 0	I	98tI I	乙	I $\varepsilon^{\circ} 0$	\bigcirc	\bigcirc	V	ち86ちIZ8	6I	ャ8てEZIZ9S．」
L80＇で6t	$80-\exists t S^{\circ} \mathrm{L}$	E80 0	Stto 0	¢6600	98tII	0	I $\varepsilon^{\circ} 0$	\bigcirc	\bigcirc	L	十6160Z8	6I	LEで00てS．．
七61＊9¢Z	80－ $0^{-3} 69^{\circ} 9$	$\varsigma \angle E \cdot 0$	¢Z0＇て－	18600	98tI I	0	10.0	L	L	\bigcirc	899StてZ0 I	ZI	L：つ：899¢ってZ0I：ZI
Nサə	［P＾d	GS	セヤว ${ }^{\text {² }}$	ојu！	U	๐ひə®ิ	dVW		¢ขगा®	Vगข［1	uo！	४НО	dNS

 คの คの

 웅 $-\hat{\theta}_{0}^{0}$ o

 90－ヨ0t•I

 ín
Th
ó i

 ì
H
\vdots
\vdots
\vdots ì
N1
\vdots
\vdots N
H
0
0
0 N
or
\vdots
0

 i
 N
N
O
ón
 $\stackrel{-}{\dot{\sigma}}$

 －
Qे
فे
oे -
0
0
0
0
0
0

 0
\vdots
1
1

1 | \circ |
| :--- |
| 0 |
| 1 |
| 1 |
| \vdots |

0
u
1r
\dot{b}

$\dot{4}$
$\stackrel{1}{1}$
$\stackrel{1}{3}$
 0
0
1
1
b
 s810 0¢ ¢ 28I0\＆ระ
 L9I．0とsع
 9\＆1•LZSE岂 ω
N
0
0
o

+ U ¢068\＆ระ ILL゚LESE N
N
－
U
U
 N カ6が969 I\＆L＇zて¢ร LOZ゙6ISE じカて6もを +
+
+
+
+
+

0 ＋
+
+
N
U ¢08． $26 \downarrow$ を
 I8モ・を8て§

 u
\vdots
$\substack{u \\ 0 \\ 0}$
 N
N
N
N
N $\underset{\sim}{\infty}$
$\stackrel{\sim}{\sim}$
$\stackrel{\omega}{\omega}$

 웅-

 rs7099825 rs150878459
rs77078152

 rs113787472
rs77511802
 0
0
0
0
0
-
∞
∞
0

 $\stackrel{\dot{A}}{\dot{\circ}} \dot{O}$ O 어N 걱

 $\stackrel{\rightharpoonup}{N}$
$\stackrel{N}{1}$
$\dot{1}$
\vdots

 a
$\dot{6}$
\vdots
\vdots
0 a
∞
$\frac{1}{1}$
$\dot{1}$
2 a
∞
+1
\vdots
\vdots
 2
2
o
1.
oे 2
2
Q
$\stackrel{1}{2}$
2 2
2
प1
$\dot{1}$
2 2
2
à
人̀
2 2
à
oे
oे 90-ヨ9*9 90-39*9 a
in
or
ín
on a
a
à
$\dot{1}$
2 a
0
\vdots
\vdots

\vdots | $\dot{\sim}$ |
| :--- |
| |
| |
| $\dot{\alpha}$ |

 N
N
Th
on

 4
6
6
1
6

 4
a
त1
oे
on u
u
ד1
\vdots
on a
i
11
0
0 u
0
0
0
\vdots
0

198．028E	90－ヨLS＇乙	¢0I＇0	$267^{\circ} 0^{-}$	6660	0IEZI	0	$61^{\circ} 0$	V	V	\bigcirc	0¢6LS¢99	L	¢8It66¢cs．I
9t8．028\＆	90－39¢ ${ }^{-}$	¢01．0	26t ${ }^{-}$	6660	01EZI	0	$61^{\circ} 0$	L	L	\bigcirc	8 t LLSS99	L	E096S899S．ı
£ャ8．028\＆	90－39¢ $冖$	¢01．0	こ6t＊${ }^{-}$	6660	0IEZI	0	$61^{\circ} 0$	\bigcirc	\bigcirc	\bigcirc	0 0Z0LSS99	L	\＆16IILZS．ı
カて8．028\＆	90－马9¢ ${ }^{-1}$	¢0I＇0	26t 0^{-}	I	0IEZI	0	$61^{\circ} 0$	V	V	\bigcirc	9t8csc99	L	LSIE9SILS．I
カャ¢＊0Z8E	90－ヨZ¢ $冖$	¢01．0	£6t＊${ }^{-}$	6660	01EZI	0	$61^{\circ} 0$	\bigcirc	\bigcirc	L	LOE0¢¢99	L	七\＆99てZ0［ S．
ILS．028E	90－GIS $冖$	¢0I．0	\＆6t 0^{-}	6660	0IEZI	0	$61^{\circ} 0$	L	L	\bigcirc	LtEscc99	L	696t8t8zs．I
¢St．0Z8を	90－ヨ8t $冖$	¢0I．0	\＆6t 0^{-}	6660	0IEZI	0	$61^{\circ} 0$	\bigcirc	\bigcirc	V	て8ZZ¢¢99	L	¢¢9IEZ0IS．I
6てが0て8を	90－ 38 ¢ $^{\text {－}}$	¢01．0	£6t＊${ }^{-}$	6660	01EZI	0	$61^{\circ} 0$	V	V	9	0 LEIS¢99	L	t8LttILIS．I
0\＆t＊0て8を	90－ヨ8t $冖$	¢01．0	£6t＊${ }^{-}$	6660	0IEZI	0	$61^{\circ} 0$	V	V	\bigcirc	L0ヶIS¢99	L	96¢EEEZIS．t
LI6 $\dagger 6 L E$	90－ヨ¢ع＇	¢0I．0	$96 \downarrow^{\circ} 0^{-}$	6660	01EZI	0	$61^{\circ} 0$	\bigcirc	\bigcirc	L	9てEL¢¢99	L	てE\＆198\＆LEs．．
80て＇I86I	90－ヨ¢ع＇	$t ¢ I^{\circ} 0$	6ZL＇0	I	01EZI	τ	600	V	\bigcirc	V	Z66¢8Z8E	II	StてZ9tIS．
910ても¢をย	90－ヨıでて	Ill 0	92s．0－	£66．0	01EZI	0	9100	V	V	\bigcirc	8LISI999	L	009LELEIIS．
0L9＊8L19	90－ヨ81＇乙	$080 \cdot 0$	08E＊0－	8660	60\＆ZI	0	$97^{\circ} 0$	\bigcirc	\bigcirc	L	七6E98208	$\dagger \mathrm{I}$	とャ9てってZS．．
08¢．09LE	90－390 $冖$	901＊0	E0¢ ${ }^{-}$	I66．0	0IEZI	0	6100	L	L	V	9ISカIS99	L	St9808Ls．
て6t゚0ZL	90－39 ${ }^{\text {c }}$ I	$9 ¢ て ゙ 0$	8てI＇I	2 78.0	0IEZI	0	E0\％	L	\bigcirc	L	8ZILS9ZS	9I	ItttçLIIS．
¢ES＊908E	90－3I9－	¢01．0	†0¢＊0	6660	01\＆ZI	0	6100	V	\bigcirc	V	It99IS99	L	06Lてっで0IS．t
İで七ऽLE	90－ヨ8t ${ }^{\text {I }}$	901．0	ULS＊${ }^{-}$	9860	0IEZI	0	$61^{\circ} 0$	\bigcirc	\bigcirc	L	$0 \downarrow 96 ¢ ¢ 99$	L	てZELLL¢¢s．
£ $\dagger 6 . \dagger 9 L \varepsilon$	90－ヨくt゙I	¢01．0	LOS＇0－	6660	01\＆ZI	0	$61^{\circ} 0$	V	V	\bigcirc	IS88IS99	L	86L80ZセEs．
LZ9＊08を	90－ヨtti I	¢01．0	90¢ ${ }^{-}$	I	0IEZI	0	$61^{\circ} 0$	V	V	\bigcirc	80LカIS99	L	L0ttezoIS．I
Iセt゙Lてを	90－ヨIE＇I	¢9E．0	＋9 ${ }^{\circ} \mathrm{I}^{-}$	¢66．0	60\＆ZI	0	100	L	L	V	E80099EII	II	七9t¢688EIS．I
とで668を	90－ヨ6で I	E0I＇0	$86 *^{\circ} 0$	I	01EZI	乙	02＊0	L	L	\bigcirc	StS9069	9	ILt86IZIS．t
LZで66LE	90－马92．I	¢0I．0	60¢ ${ }^{-}$	I	01EZI	0	$61^{\circ} 0$	V	V	\bigcirc	七6ESIS99	L	Stz8Ez01s．ı
IS0066LE	90－ヨャで I	S0I．0	605＊0－	I	01EZI	乙	$61^{\circ} 0$	\bigcirc	\bigcirc	L	ャI9¢IS99	L	80¢8てZ0IS．I
カ6S＊808E	90－ヨ9I「I	S0I＇0	OLS＊${ }^{-}$	$666{ }^{\circ}$	01EZI	0	$61^{\circ} 0$	V	V	\bigcirc	ャI9EIS99	L	LL9I9LIIS．t
カ0 ι° ¢ \dagger 亿	90－ق¢I•I	6It゙0	980 0°	2L60	01EZI	0	100	\bigcirc	\bigcirc	L	68¢¢6ELL	91	29t86ILS．I
8It゙9¢8を	90－ヨZI「I	S0I＇0	60¢ ${ }^{-}$	S660	01EZI	0	$61^{\circ} 0$	\bigcirc	\bigcirc	\bigcirc	8ZS¢IS99	L	10L8920IS．t
Lt0＇ZS6E	90－3II「I	t01．0	80¢ ${ }^{-}$	ES6．0	0IEZI	0	Iで0	V	V	LV	8L0t9¢99	L	V：LV：8I0t9¢99：L
9tI「80t	90－ヨt0 ${ }^{-1}$	LIE゙0	$97 ¢^{\prime} \mathrm{I}$	6.0	01EZI	0	20＊0	L	OL	L	0 IZZ0¢って	02	9E0It8¢s．I
9 9どİ9	90－700 I	$t ¢ て ゙ 0$	でで 1	1960	0IEZI	0	E0\％	L	V	L	9L6t6t99	$\varepsilon 1$	カャ066¢6S．I
0と0＊I9Lt	L0－GรL\％ 6	$660{ }^{\circ}$	L8t＊ 0	£68\％	01EZI	0	$82^{\circ} 0$	VDO	VDO	\bigcirc	6tI60Z6E	ς	Z8EZIL9SS．
8ZC＊6LZ	L0－ヨ¢9 ${ }^{-1}$	Z6E＊0	LIO ${ }^{\text {－}}$	86.0	0IEZI	0	100	\bigcirc	\bigcirc	V 5	£908\＆ZZ0I	ZI	$\begin{array}{r} \mathrm{D} \\ \mathrm{VD:£908} \mathrm{\varepsilon zZ0I:ZI} \end{array}$
t08．082	L0－ヨยz｀て	26E＊0	$620{ }^{\circ}$	LL6 0	0IEZI	0	10.0	V	V	\bigcirc	てZELEZZ01	ZI	V
£6L＇z8て	L0－ 0^{-}LO 0°	$06 \varepsilon^{\circ} 0$	†て0て＇	18600	0IEZI	0	10＊0	L	L	\bigcirc	899¢ャてZ0I	ZI	：D：ZZELEZZ0I：ZI L：つ：899¢ヶてZ0I：ZI
Nサワ	［PAD	ES	セłog	ofu！	U	๐นวร์	dVW	गРІए ．IOU！N	¢วगाए	V ${ }^{\text {PJIP }}$	uO！！${ }^{\text {dod }}$	४Hつ	dNS

rs2140564
rs2960970
rs3857691
rs59247139
rs7099825
rs73109514
rs10262781
rs7350002
rs7792212
rs11004372
rs35122750
rs9690120
rs10825349
rs2004237
rs6978918
rs10925310
rs2687052
rs7809649
rs27276
rs113086330
rs28888140
rs10274580
rs60910884
rs10233183
rs149883819
rs10244331
rs6603149
rs1506452
rs12751629
rs58448907
rs200905081
rs77219363
rs7793104
rs7776751
rs34457100
rs144669467
rs7003790

 N

$$
\begin{aligned}
& \text { ue dNS } \\
& \hline \text { L }
\end{aligned}
$$

 S9E990I ${ }^{\text {s．t．}}$ t9E990［s． zisz80Is．．． 0ISz80［s．${ }^{\text {．}}$ 19£990［ ${ }^{\mathrm{s} .}$ ． 09E990［ ${ }^{\mathrm{S} .}$ ． | a |
| :---: |
| $\stackrel{0}{6}$ |
| $\stackrel{4}{6}$ |
| | rs1066358

 3：98914294：T：TA
CC
 rs 1082509 rs 140015087
 12：91777215：A：A LOSZ80IS．
ODVOLOLLOVS L6I90686 £z990686 200LI686 てち891686 §6£01686 90 L0I686 6IL0I686 EtEIL686 08II6S80I
t6でちI686 St8z9§99 zz891686 EtIL8ILて ESt91686 sIZLLLI6

$$
>
$$

279．9E01	90－ 9666	$90 z^{\prime} 0$	6060^{-}	6660	0IEZI	0	t0 0
09c＇9t0t	90－®I66	$660^{\circ} 0$	9をt「0－	I	0ı\＆とI	0	Iで0
0IS＇9t0t	90－Э06．6	$660^{\circ} 0$	9\＆t＇0－	I	0IEZI	0	Iで0
Lで 9 ¢0t	90－ヨ06 6	$660^{\circ} 0$	9\＆t「0－	I	0IEZI	0	Iで0
9セE゙tt0t	90－E98＇6	$660^{\circ} 0$	9\＆t「0－	I	0IEZI	0	Iで0
08E゙カt0t	90－E98＇6	$660^{\circ} 0$	9\＆t「0－	I	0IEZI	0	Iで0
L89＇St0t	90－ES8＊6	$660^{\circ} 0$	9\＆t「0－	6660	0IEZI	0	Iで0
¢て9＇St0t	90－ヨャ8＇6	$660^{\circ} 0$	9\＆t「0－	6660	0IEZI	0	Iで0
てZ9＇St0t	90－ヨャ8＇6	$660^{\circ} 0$	9\＆t「0－	6660	0IEZI	0	Iで0
00¢＇St0t	90－ヨャ8＇6	$660^{\circ} 0$	9\＆t「0－	6660	0IEZI	0	Iで0
$00 \varepsilon \cdot \varepsilon 609$	90－Ez8＊6	18000	9¢E゙0	L660	0ı\＆とI	0	¢t 0
966 St0t	90－36L＇6	$660^{\circ} 0$	9 ¢t0 ${ }^{-}$	6660	0IEZI	0	Iで0
IL9 ${ }^{\text {c }}$ I8Et	90－ELL＇6	$660^{\circ} 0$	$0 \downarrow \mathrm{t}^{\circ} 0^{-}$	LL8 0	0IEZI	0	Lで0
960 ＇tt0t	90－EIL＇6	$660^{\circ} 0$	9\＆t「0－	I	0IEZI	0	しで0
9LI＇9L6		L6100	EL80	$\angle 660$	0IEZI	0	to 0
60でtt0t	90－E89＊6	$660^{\circ} 0$	9\＆゙「0－	I	0IEZI	0	Iで0
¢£で91zて	90－ 389×6	$\varepsilon \in \vdash^{\circ} 0$	985＇0	6860	0IEZI	0	010
Et6 26 \％	90－EL9 6	9LE＊0	¢999 ${ }^{-}$	$188^{\circ} 0$	0ıEとI	0	I0

 IHM
VSAW

 S88IC99 L 86L80Zちとร．I K．ıлооs！p S88IS99 L 86L80てもを uo！！！sod yHつ dNS

 86L80ZtEs．I SGdd Ku．．V

 IS88IS99 L 86L80てもES．I К．ıəлоэs！p uo！！！sod yHD dNS A．Adjusting for medication use
Supplemental Table 5：Replication results from top loci on chromosome 7：rs34208798
for all cohorts was good（Army NSS1 $=0.72$ ；Army NSS2 $=0.67$ ；Army PPDS＝0．71；WHI＝1．02－1．03；MESA＝0．37）． replication（rs2004237）was neither genotyped nor imputed in WHI so we used rs7252584 as a highly－correlated proxy．The imputation values

 Meta Analysis
 ャ6I60Z8 6I LEてち00ZS． ．VSAN七6I60Z8 6I L\＆Zt00Zs．I SGdd Ku．．V t6I60Z8 6I LEとt00Zs． ZSSN Ku．．V 66160Z8 6I LEてt00Zs．I ISSN Ku．．．V ャ6I60Z8 6I LEZち00ZS．I К．Іəлоэs！p uo！！！sod yHつ dNS

uO!!!sod YHO dNS
A. Adjusting for medication us
variance of the genotype dosage to the expected binomial variance, based on the estimated minor allele frequency p ; effN is >30 for all SNPs.

SNP	CHR	position	alleleA	alleleB	minor allele	MAF	geno	n	info	Beta	SE	pval	effN
rs72662446	8	59113186	C	T	T	0.03	2	7263	1	-1.85	0.32	$6.36 \mathrm{E}-09$	468.807
rs9599044	13	66494976	T	A	A	0.03	0	7264	0.961	1.87	0.36	$2.16 \mathrm{E}-07$	353.893
rs 139628768	6	154761127	C	A	A	0.01	0	7264	0.911	-3.35	0.65	$2.82 \mathrm{E}-07$	108.356
rs 112390938	7	156779166	C	T	C	0.01	0	7264	0.841	3.12	0.62	$6.01 \mathrm{E}-07$	113.645
rs953628	3	98838914	G	T	T	0.17	2	7264	1	0.72	0.15	$6.96 \mathrm{E}-07$	2087.454
rs5972903	X	33619774	T	C	C	0.46	0	7261	0.993	-0.55	0.11	$9.19 \mathrm{E}-07$	3603.683
$\mathrm{CHR}=$ chromosome. In the geno. (genotyping) column, $0=$ imputed SNP and $2=$ genotyped SNP. Info refers to info score for imputation (indicating imp imputed SNPs had info scores ≥ 0.80. AlleleA is the tested allele. MAF is the estimated minor allele frequency and is ≥ 0.01 for all SNPs. Position is g iv GRCh37/hg19. effN, or the "effective minor allele count" of a variant, is defined as $2 \mathrm{p}(1-\mathrm{p}) \mathrm{Nv}$, where p is the estimated minor allele frequency, N and v is "oevar", a measure of imputation accuracy. If a SNP is genotyped, then oevar $=1$. For imputed genotypes, oevar is the ratio betw													

Z¢9＊68てE	L0－ヨZど8	［ I 0	$\mathcal{E S} 0^{-}$	I	t¢99	乙	Sto	L	\bigcirc	L	978t09て8I	\mathcal{E}	ILOSL9s．
99でIELI	L0－GL8 ${ }^{\circ}$	¢I＇0	$9 L^{\circ} 0^{-}$	9L60	E¢99	0	SI＇0	L	\bigcirc	L	LE9StSIEI	II	¢Z88¢97s．ı
LL9 ${ }^{\text {a }}$ I	L0－ヨยャワ 9	$8 \mathrm{~S}^{\circ} 0$	06° て－	9L60	t¢99	0	10.0	\bigcirc	\bigcirc	V	IS8てEてEt	S	เE6EZ988 ${ }^{\text {S．}}$
	L0－ヨヤモ゙9	9100	080	1	ES99	τ	\＆10	L	L	\bigcirc	¢LE89¢IEI	II	£E8¢69ZS．I
\＆90＊IてZ	L0－G0 ${ }^{\circ} \mathrm{S}$	で0	てI＇Z	6.0	†¢99	0	て0＊0	L	DL	L	0IてZ0ヶカて	02	9と0 \dagger ¢8ss．
68て＇0I	L0－ヨE0 ${ }^{\text {S }}$	て， 0	$\varepsilon 1^{\circ} \varepsilon^{-}$	$\angle t^{0}$	t¢99	0	20\％	V	V	\bigcirc	9L8tt68SI	L	LZS60I68IS．I
EL0．09E	L0－ヨE8＊	$\varepsilon \varepsilon^{\circ} 0$	L9 ${ }^{\text {I }}$	七I8．0	†¢99	0	E0＊0	\bigcirc	$\begin{aligned} & \text { LOLVD } \\ & \text { LPDDVPD } \end{aligned}$	\bigcirc	てL068ttて	$0 Z$	69tL80［［ ${ }^{\text {S．}}$
8LE＇Z8E	L0－390＊\dagger	IE＊0	LS＇${ }^{-}$	9660	t¢99	0	E0＊0	\bigcirc	\bigcirc	V	9691てI6て	\mathcal{E}	ILIてt96E［S．I
£66 ${ }^{\text {¢ } 62 \text { E }}$	L0－ヨ09 ¢	［100	$\dagger S^{\circ} 0^{-}$	I	七¢99	0	Sto	L	\bigcirc	L	LャII6Sて8I	ε	¢8Z6t0zs．I
\＆LL＊6L9I	L0－ヨ88 ${ }^{\text {－}}$	¢I＇0	$6 L^{\circ} 0^{-}$	I66．0	E¢99	0	SI＇0	\bigcirc	L	\bigcirc	I0I8L¢IEI	II	6ES68LS．
LE0＇Z¢Z	L0－ヨてどて	$0 t^{0}$	七0＇て－	I	七¢99	乙	20\％	L	L	\bigcirc	¢L69L0tt	IZ	ESELZI8s．．
ES¢＊60t	80－38t゚ L	［ $\varepsilon^{\circ} 0$	$69^{\circ} \mathrm{I}$	I	E¢99	乙	E0＊0	L	L	\bigcirc	98IEIL6S	8	9ttて 299 LS．
Nサə	［P＾d	日S	セłวg	oJu！	U	оиวธ์	JVW	ગગગાए ıои！u	gขРा®	V ${ }^{\text {PगI® }}$	uo！！	บHว	dNS

				ouənb גKıоиə рәұеи $00<$ Of 2.1			Sə ว૫ ว० Шə d－I）d ！\quad po pad		B！̣！ INS ициел \boldsymbol{e} W＇əə S pəュnc		प7 07 əo̊bso щındu！јо ә ய әл！̣əәŋみっ， IV $08^{\circ} 0<$ 	Kұ0u IO＇N S ołu！ 1 UI	ィәо，，S！ィ рие 6［ธิЧ／LદЧวปЮ sdNS pəndu！ ошоェบ＝ไНつ
ち9E＊0ZI	L0－马8ع＊8	ZS＇0	$9 c^{\circ} \square^{-}$	¢86．0	9†0¢	0	10＊0	L	L	\bigcirc	99¢Z60L	L	I8I8666t［S．I
008．zて0 I	L0－ヨしど9	81＇0	060	LI6．0	$9 \downarrow 0$ ¢	0	てI「0	VP	VP	\bigcirc	EtE899I8	8	0Z¢¢0EZLIS．I
918．0で	L0－GSİS	Lで0	¢E． I^{-}	I	$9 \downarrow 0$ ¢	乙	＋0．0	V	V	\bigcirc	8\＆とて06tt	6 I	Z9¢9¢ZLs．
$06 \varepsilon^{\circ} 0 \varepsilon \varepsilon$	L0－马E8 ${ }^{\text {I }}$	£ $\varepsilon^{\circ} 0$	$0 L^{\prime} \mathrm{I}^{-}$	8LL＇0	9t0¢	0	＋0：0	\bigcirc	\bigcirc	L	966t80I8	LI	9I686I6EIS．I
8t8．6It	L0－马ย์ I	Lで0	Et＇ I^{-}	［86．0	9†0¢	0	＋0：0	V	V	\bigcirc	9 9セを16tt	6I	て¢IE0tを］IS．
カยガIยて	80－ヨ0で七	$8 \varepsilon^{\circ} 0$	80° て－	$\varepsilon 9 L^{\circ} 0$	$9 \downarrow 0$ ¢	0	E0\％	L	L	\bigcirc	0Z8t80I8	LI	七てع60L6s．
90¢＊6LZ	80－G0 $L^{\circ} \mathrm{E}$	$\downarrow \mathcal{E}^{\circ} 0$	$98^{\text { }}$－	¢660	$9 \downarrow 0$ ¢	0	E0\％	\bigcirc	\bigcirc	\bigcirc	62898¢てZI	t	0tL¢9EIIIS．
NJə	［P＾d	GS	セฆวg	oJu！	u	оแәถ	dVW	ગગગाए Iou！u	¢วगโए	VPग［ ${ }^{\text {® }}$	uO！！	廿Hつ	dNS

Supplemental Table 9：Genome－wide association study（GWAS）results for the top loci（p＜1x10－5）with the depressive symptom score，after adjusting

†て8＊0ャてI	L0－gと8 6	¢ ${ }^{\circ} 0$	Z $L^{\circ} 0^{-}$	1	てE8t	乙	$\varsigma_{\text {¢ }}{ }^{\circ} 0$	\bigcirc	L	\bigcirc	七\＆8¢0t9t	乙	69tI 8 ZS．
としだんIIて	L0－ゴど8	［ ${ }^{\circ} 0$	${ }^{+} C^{*} 0^{-}$	$6 \pm 6^{\circ} 0$	て\＆8t	0	$9 \varepsilon^{\circ} 0$	L	L	$\begin{gathered} \text { P } \\ \text { OLVOPL } \\ \text { VOPLVL } \end{gathered}$	8t0LZILS	†	6609LZI［s．${ }^{\text {a }}$
866．${ }^{\circ} 9$ I	L0－G00 9	$0 t^{\circ}$	$10 \cdot 7$	LZ8．0	てE8t	0	200	\bigcirc	L	\bigcirc	LZ869L6ZI	ε	IS88ILZS．I
0¢で80て	L0－G¢ $8^{\circ} \mathrm{S}$	$9 \varepsilon^{\circ} 0$	6L＇I－	9860	て\＆8t	0	200	V	V	\bigcirc	6IIEI8LI	LI	Z60LtEtIIS．I
8¢E゙を¢6	L0－GtI「¢	91．0	08．0－	9660	てE8t	0	［ ${ }^{\circ} 0$	\bigcirc	\bigcirc	\bigcirc	£¢6Z9t¢9	ZI	¢E6682Zs．ı
ยLE＊6IE	L0－gZL＇t	$87^{\circ} 0$	で「 ${ }^{-}$	Z¢8．0	てE8t	0	t00	\bigcirc	\bigcirc	VLLLS	LIZ6tL0L	¢I	0IEzて0Z0Zs．ı
06E゙ャ89 I	L0－ゴどャ	てI「0	29＊－	1	てE8t	τ	で0	V	V	\bigcirc	¢089008L	τ	カ七IL80Zs．ı
668 ²9	L0－g9 ${ }^{\text {－}}$ I	It＊	¢ $\mathrm{I}^{\prime} \mathrm{Z}^{\prime}$	L6．0	てE8t	0	200	L	L	\bigcirc	99L¢6LEEI	ZI	L9II666EIS．I
ELS＇192	L0－G6E I	てE＇0	89 ${ }^{\text {－}}$	1660	てE8t	0	E0\％	\bigcirc	\bigcirc	\bigcirc	0ャ6Iて9でI	†	IZ86IEZ9s．
609＊09t	L0－g9で I	$\varepsilon て ゙ 0$	七で「－	$9 L^{\circ} 0$	てE8t	0	L0．0	\bigcirc	\bigcirc	L	¢89068tt	6 I	$9 \mathcal{6 6 E} 0$ ¢ ${ }^{\text {S．}}$ ．
L96．6It	$80^{-}-\mathrm{G6} \varsigma^{\bullet}$ ¢	カで0	¢E． I^{-}	I	てE8t	τ	S0．0	V	V	\bigcirc	91ヶて06tt	6 I	E0E008LI ${ }^{\text {S．}}$
961 ${ }^{\circ} 06 \varepsilon$	80－ヨ69 ${ }^{-}$	$9{ }^{\circ} 0$	Et＇ I^{-}	2760	てE8t	0	S0．0	V	V	\bigcirc	0t0と68tt	6 I	$88 t 0$ ¢8ttIS．I
¢0¢＇80Z	$80^{-3} \mathrm{BLZ}$ I	¢E．0	10ヶで	I	てE8t	τ	20.0	V	V	\bigcirc	8SLSL80Z	8	8Z0E669s．I
EL8．00t	$60^{-}-3 t L^{\circ} \mathrm{L}$	$\varsigma \%^{\circ} 0$	St「 ${ }^{-}$	1860	てE8t	0	50．0	V	V	\bigcirc	9 9tをE16tt	6 I	
Nサə	${ }^{\text {P }}$ ，${ }^{\text {d }}$	GS	セłəg	oJu！	U	оนวถ์	JVW	әगाए ．IOu！	¢गขIए	V ${ }^{\text {PrIE }}$	uo！！${ }^{\text {Sod }}$	४Нว	dNS

u！pnoxa
Meta Analysis
Meta Analysis MESA

カカて99てLs．ı SGdd Ku．．．v

 dNS
A．Adjusting for medication use
Supplemental Table 11：Replication results from top loci on chromosome 8 in females：rs72662446
$\cdot\left(6 Z^{\circ} 0=\right.$ VSAN ${ }^{6} 9 \varsigma^{\circ} 0=$ SGdd KU.IV ${ }^{6}+59^{\circ} 0-Z 9^{\circ} 0=$ ZSSN

†1900	ャで0	†てI「0－	L6SE				V	\dagger				
89L＇0	で「0	ちてI「0	て0L	\bigcirc	V	81000	V	\bigcirc	8SLSL80Z	8	820E669S．I	VSAW
＋6t＇0	St．0	LOE＊0－	\＆ItI	I	V	6200	V	\bigcirc	8SLSL80Z	8	820E669S．I	SGdd Kunv
0L0＇0	E0． 1	¢98．${ }^{-}$	$\mathcal{E} \notin \mathcal{E}$	I	V	LEO 0	V	\bigcirc	8SLSL80Z	8	820E669S．I	ZSSN Kuıv
七Z8．0	カャ゙0	$860{ }^{\circ}$	6EII	I	V	LEO 0	V	\bigcirc	8SLSL80Z	8	820E669S．I	ISSN Kuıv
90－38İZ	$8 \varepsilon^{\circ} 0$	ZI8＊${ }^{-}$	9t0s	5	V	こZ0＊0	V	\bigcirc	8SLSL80Z	8	820E669S．I	К．ıллоэs！p
${ }^{\text {P }}$ ¢ ${ }^{\text {d }}$	日S	${ }^{\text {epg }}$	U	＇оиәљิ	әРГ！．ou！u	dVW	¢गขग	VगР［1］	uo！	$\begin{gathered} \mathrm{yH} \mathrm{Os} \\ \end{gathered}$	dNS иоџеоирәш ло	

$\cdot\left(99^{\circ} 0=\right.$ VSAW ${ }^{〔} 66^{\circ} 0=$ SGdd KU．IV ${ }^{〔} 68^{\circ} 0$

$285^{\circ} 0$	Iで0	$9 \pm \mathrm{I}^{\circ} 0^{-}$	L6SE				V	\bigcirc				
［S60	$6 \varepsilon^{\circ} 0$	†で00	Z0L	I	V	LE0＊0	V	\bigcirc	9てもを16tt	6 I	て\＆IE0tを［IS．	VSAW
ヶZ8．0	$\varsigma \varepsilon^{\circ} 0$	8L0＊＊－	\＆ItI	\bigcirc	V	$t+0 \cdot 0$	V	\bigcirc	9 9tを16tt	6I		SGdd Kunv
LOI＇0	88°	Iてti I	$\varepsilon \downarrow \mathcal{L}$	\bigcirc	V	$0+0 \cdot 0$	V	\bigcirc	9てtを16tt	6I		ZSSN Kunv
180．0	$L \varepsilon^{\circ} 0$	IS9＊0	6EII	\bigcirc	V	$9+0 \cdot 0$	V	\bigcirc	9 9tを16tt	6 I		ISSN Ku．ıV
L0－ヨย ${ }^{\text {a }}$ I	Lで0	してが1－	9t0s	I	V	tt0 0	V	，	9てtを16tt	6I		К．ıəлоэs！p
［P＾d	ES	セfog	U	＇Оиә¢์	әРІІ ．ıощ！	dVW	¢गग［	Vขगा®	uo！！ Sod	\％HO	dNS	

Supplemental Figure 1. Quantile-quantile (QQ) plots and Manhattan plots for binary depressive symptoms score from the Hispanic Community Health Study/Study of Latinos

The quantile-quantile plots ("QQ-plots"), which present the observed by expected P-values on the $-\log 10$ scale, indicate conformity of the observed results to what would be expected under the null. In the Manhattan plots, the x-axis is the chromosomal position and the y-axis is the $\log 10 \mathrm{p}$-value for the association between each SNP and depressive case/control status derived. The dotted line shows the genome-wide significance level ($5 \times 10-8$). The displayed p-value corresponds to SNPs with effective $\mathrm{N}>50$.

 souәчd әчL
sotzezzisi

 8ちてI0s0IS．s． £Zち8tSIOZs．I I66SLEELS．． | 0 |
| :--- |
| $\stackrel{0}{0}$ |
| $\stackrel{y}{4}$ |
| + |
| + | 8 \＆ $60 \varepsilon L$ LS．I rs7796725

 ZL6sLEELS．I
 rs 10611601 Betas and ORs $(95 \% \mathrm{CI})$ per unit of the GRSs and p－values were estimated using linear and logistic mixed models（GENESIS and GMMAT）incorporating covariance घワษVHつ ョפษVHつ ョÐУННつ घФ๖ННつ घФษナНつ $\stackrel{\circ}{\hat{0}}$ Кеяэо 울 울
产 울
$\stackrel{\rightharpoonup}{2}$ 울
产 울 әupueqz \mathfrak{x} ग〇d әupueqz \mathfrak{x} DĐd

 \square
0
0
N
N
0
0
0
 จupueqz \mathfrak{x} DDd

Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium Authorship

```
Naomi R Wray* 1,2
Stephan Ripke* 3, 4, 5
Manuel Mattheisen* 6, 7, 8,
9
Maciej Trzaskowski* 1
Enda M Byrne 1
Abdel Abdellaoui 10
Mark J Adams 11
Esben Agerbo 9, 12, }1
Tracy M Air 14
Till F M Andlauer 15, }1
Silviu-Alin Bacanu 17
Marie Bækvad-Hansen 9,18
Aartjan T F Beekman }1
Tim B Bigdeli 17, 20
Elisabeth B Binder 15, }2
Douglas H R Blackwood 11
Julien Bryois 22
Henriette N Buttenschøn 8,
9,23
Jonas Bybjerg-Grauholm 9,
18
Na Cai 24, 25
Enrique Castelao 26
Jane Hvarregaard
Christensen 7, 8, }
Toni-Kim Clarke 11
Jonathan R I Coleman 27
Lucía Colodro-Conde 28
Baptiste Couvy-Duchesne
29,30
Nick Craddock 31
Gregory E Crawford 32, 33
Gail Davies 34
Ian J Deary 34
Franziska Degenhardt 35,36
Eske M Derks 28
Nese Direk 37, }3
Conor V Dolan }1
Erin C Dunn 39, 40, 41
Thalia C Eley 27
Valentina Escott-Price }4
Farnush Farhadi Hassan
Kiadeh 43
Hilary K Finucane 44, 45
Naomi R Wray* 1,2
Stephan Ripke* 3, 4, 5
Manuel Mattheisen* 6, 7, 8, 9
Maciej Trzaskowski* 1
Enda M Byrne 1
Abdel Abdellaoui 10
Mark J Adams 11
Esben Agerbo 9, 12, 13
Tracy M Air 14
Till F M Andlauer 15, 16
Silviu-Alin Bacanu 17
Marie Bækvad-Hansen 9, 18
Aartjan T F Beekman 19
Tim B Bigdeli 17, 20
Elisabeth B Binder 15, 21
Douglas H R Blackwood 11
Julien Bryois 22
Henriette N Buttenschøn 8, 9, 23
Jonas Bybjerg-Grauholm 9, 18
Na Cai 24, 25
Enrique Castelao 26
Jane Hvarregaard
Christensen 7, 8, 9
Toni-Kim Clarke 11
Jonathan R I Coleman 27
Lucía Colodro-Conde 28
Baptiste Couvy-Duchesne
29, 30
Nick Craddock 31
Gregory E Crawford 32, 33
Gail Davies 34
Ian J Deary 34
Franziska Degenhardt 35, 36
Eske M Derks 28
Nese Direk 37, 38
Conor V Dolan 10
Erin C Dunn 39, 40, 41
Thalia C Eley 27
Valentina Escott-Price 42
Farnush Farhadi Hassan
Kiadeh 43
Hilary K Finucane 44, 45
```

Andreas J Forstner 35, 36, 46, 47
Josef Frank 48
Héléna A Gaspar 27
Michael Gill 49
Fernando S Goes 50
Scott D Gordon 51
Jakob Grove 7, 8, 9, 52
Lynsey S Hall 11, 53
Christine Søholm Hansen 9, 18
Thomas F Hansen 54, 55, 56
Stefan Herms 35, 36, 47
Ian B Hickie 57
Per Hoffmann 35, 36, 47
Georg Homuth 58
Carsten Horn 59
Jouke-Jan Hottenga 10
David M Hougaard 9, 18
Marcus Ising 60
Rick Jansen 19, 19
Eric Jorgenson 61
James A Knowles 62
Isaac S Kohane 63, 64, 65
Julia Kraft 4
Warren W. Kretzschmar 66
Jesper Krogh 67
Zoltán Kutalik 68, 69
Yihan Li 66
Penelope A Lind 28
Donald J MacIntyre 70, 71
Dean F MacKinnon 50
Robert M Maier 2
Wolfgang Maier 72
Jonathan Marchini 73
Hamdi Mbarek 10
Patrick McGrath 74
Peter McGuffin 27
Sarah E Medland 28
Divya Mehta 2, 75
Christel M Middeldorp 10,
76, 77
Evelin Mihailov 78
Yuri Milaneschi 19, 19
Lili Milani 78

Francis M Mondimore 50
Grant W Montgomery 1
Sara Mostafavi 79, 80
Niamh Mullins 27
Matthias Nauck 81, 82
Bernard Ng 80
Michel G Nivard 10
Dale R Nyholt 83
Paul F O'Reilly 27
Hogni Oskarsson 84
Michael J Owen 85
Jodie N Painter 28
Carsten Bøcker Pedersen 9,
12, 13
Marianne Giørtz Pedersen 9,
12, 13
Roseann E. Peterson 17, 86
Erik Pettersson 22
Wouter J Peyrot 19
Giorgio Pistis 26
Danielle Posthuma 87, 88
Jorge A Quiroz 89
Per Qvist 7, 8, 9
John P Rice 90
Brien P. Riley 17
Margarita Rivera 27, 91
Saira Saeed Mirza 37
Robert Schoevers 92
Eva C Schulte 93, 94
Ling Shen 61
Jianxin Shi 95
Stanley I Shyn 96
Engilbert Sigurdsson 97
Grant C B Sinnamon 98
Johannes H Smit 19
Daniel J Smith 99
Hreinn Stefansson 100
Stacy Steinberg 100
Fabian Streit 48
Jana Strohmaier 48
Katherine E Tansey 101
Henning Teismann 102
Alexander Teumer 103
Wesley Thompson 9, 55,
104, 105

Pippa A Thomson 106
Thorgeir E Thorgeirsson 100
Matthew Traylor 107
Jens Treutlein 48
Vassily Trubetskoy 4
André G Uitterlinden 108
Daniel Umbricht 109
Sandra Van der Auwera 110
Albert M van Hemert 111
Alexander Viktorin 22
Peter M Visscher 1, 2
Yunpeng Wang 9, 55, 105
Bradley T. Webb 112
Shantel Marie Weinsheimer
9, 55
Jürgen Wellmann 102
Gonneke Willemsen 10
Stephanie H Witt 48
Yang Wu 1
Hualin S Xi 113
Jian Yang 2, 114
Futao Zhang 1
Volker Arolt 115
Bernhard T Baune 14
Klaus Berger 102
Dorret I Boomsma 10
Sven Cichon 35, 47, 116, 117
Udo Dannlowski 115
EJC de Geus 10, 118
J Raymond DePaulo 50
Enrico Domenici 119
Katharina Domschke 120
Tõnu Esko 5, 78
Hans J Grabe 110
Steven P Hamilton 121
Caroline Hayward 122
Andrew C Heath 90
Kenneth S Kendler 17
Stefan Kloiber 60, 123, 124
Glyn Lewis 125
Qingqin S Li 126
Susanne Lucae 60
Pamela AF Madden 90
Patrik K Magnusson 22
Nicholas G Martin 51
Andrew M McIntosh 11, 34
Andres Metspalu 78, 127
Ole Mors 9, 128

Preben Bo Mortensen 8, 9 ,
12, 13
Bertram Müller-Myhsok 15, 16, 129
Merete Nordentoft 9, 130
Markus M Nöthen 35, 36
Michael C O'Donovan 85
Sara A Paciga 131
Nancy L Pedersen 22
Brenda WJH Penninx 19
Roy H Perlis 39, 132
David J Porteous 106
James B Potash 133
Martin Preisig 26
Marcella Rietschel 48
Catherine Schaefer 61
Thomas G Schulze 48, 94, 134, 135, 136
Jordan W Smoller 39, 40, 41
Kari Stefansson 100, 137
Henning Tiemeier 37, 138, 139
Rudolf Uher 140
Henry Völzke 103
Myrna M Weissman 74, 141
Thomas Werge 9, 55, 142
Cathryn M Lewis* 27, 143
Douglas F Levinson* 144
Gerome Breen* 27, 145
Anders D Børglum* 7, 8, 9
Patrick F Sullivan* 22, 146, 147,

1, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, AU
2, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, AU
3, Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, US
4, Department of Psychiatry and Psychotherapy, Universitätsmedizin Berlin Campus Charité Mitte, Berlin, DE
5, Medical and Population Genetics, Broad Institute, Cambridge, MA, US
6, Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, SE
7, Department of Biomedicine, Aarhus University, Aarhus, DK
8, iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, DK
9, iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, DK
10, Dept of Biological Psychology \& EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, NL
11, Division of Psychiatry, University of Edinburgh, Edinburgh, GB
12, Centre for Integrated Register-based Research, Aarhus University, Aarhus, DK
13, National Centre for Register-Based Research, Aarhus University, Aarhus, DK
14, Discipline of Psychiatry, University of Adelaide, Adelaide, SA, AU
15, Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, DE
16, Munich Cluster for Systems Neurology (SyNergy), Munich, DE
17, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, US
18, Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, DK
19, Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, NL
20, Virginia Institute for Psychiatric and Behavior Genetics, Richmond, VA, US
21, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, US
22, Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, SE
23, Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, DK
24, Human Genetics, Wellcome Trust Sanger Institute, Cambridge, GB
25, Statistical genomics and systems genetics, European Bioinformatics Institute (EMBL-EBI), Cambridge, GB
26, Department of Psychiatry, University Hospital of Lausanne, Prilly, Vaud, CH
27, MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, GB
28, Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, AU
29, Centre for Advanced Imaging, The University of Queensland, Saint Lucia, QLD, AU
30, Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, AU
31, Psychological Medicine, Cardiff University, Cardiff, GB
32, Center for Genomic and Computational Biology, Duke University, Durham, NC, US
33, Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, US
34, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh,
Edinburgh, GB

35, Institute of Human Genetics, University of Bonn, Bonn, DE
36, Life\&Brain Center, Department of Genomics, University of Bonn, Bonn, DE
37, Epidemiology, Erasmus MC, Rotterdam, Zuid-Holland, NL
38, Psychiatry, Dokuz Eylul University School Of Medicine, Izmir, TR
39, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, US
40, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General
Hospital, Boston, MA, US
41, Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, US
42, Neuroscience and Mental Health, Cardiff University, Cardiff, GB
43, Bioinformatics, University of British Columbia, Vancouver, BC, CA
44, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, US
45, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, US
46, Department of Psychiatry (UPK), University of Basel, Basel, CH
47, Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, CH
48, Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden-Württemberg, DE
49, Department of Psychiatry, Trinity College Dublin, Dublin, IE
50, Psychiatry \& Behavioral Sciences, Johns Hopkins University, Baltimore, MD, US
51, Genetics and Computational Biology, QIMR Berghofer Medical Research Institute,
Brisbane, QLD, AU
52, Bioinformatics Research Centre, Aarhus University, Aarhus, DK
53, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, GB
54, Danish Headache Centre, Department of Neurology, Rigshospitalet, Glostrup, DK
55, Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Capital Region of Denmark, Copenhagen, DK
56, iPSYCH, The Lundbeck Foundation Initiative for Psychiatric Research, Copenhagen, DK
57, Brain and Mind Centre, University of Sydney, Sydney, NSW, AU
58, Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine and Ernst Moritz Arndt University Greifswald, Greifswald, Mecklenburg-Vorpommern, DE
59, Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, CH
60, Max Planck Institute of Psychiatry, Munich, DE
61, Division of Research, Kaiser Permanente Northern California, Oakland, CA, US
62, Psychiatry \& The Behavioral Sciences, University of Southern California, Los Angeles, CA, US
63, Department of Biomedical Informatics, Harvard Medical School, Boston, MA, US
64, Department of Medicine, Brigham and Women's Hospital, Boston, MA, US
65, Informatics Program, Boston Children's Hospital, Boston, MA, US
66, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, GB
67, Department of Endocrinology at Herlev University Hospital, University of Copenhagen, Copenhagen, DK
68, Institute of Social and Preventive Medicine (IUMSP), University Hospital of Lausanne, Lausanne, VD, CH

69, Swiss Institute of Bioinformatics, Lausanne, VD, CH
70, Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, GB
71, Mental Health, NHS 24, Glasgow, GB
72, Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, DE
73, Statistics, University of Oxford, Oxford, GB
74, Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, US
75, School of Psychology and Counseling, Queensland University of Technology, Brisbane, QLD, AU
76, Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health Service, South Brisbane, QLD, AU
77, Child Health Research Centre, University of Queensland, Brisbane, QLD, AU
78, Estonian Genome Center, University of Tartu, Tartu, EE
79, Medical Genetics, University of British Columbia, Vancouver, BC, CA
80, Statistics, University of British Columbia, Vancouver, BC, CA
81, DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University
Medicine, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, DE
82, Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, DE
83, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, AU
84, Humus, Reykjavik, IS
85, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, GB 86, Virginia Institute for Psychiatric \& Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, US
87, Clinical Genetics, Vrije Universiteit Medical Center, Amsterdam, NL
88, Complex Trait Genetics, Vrije Universiteit Amsterdam, Amsterdam, NL
89, Solid Biosciences, Boston, MA, US
90, Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, US
91, Department of Biochemistry and Molecular Biology II, Institute of Neurosciences, Center for Biomedical Research, University of Granada, Granada, ES
92, Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, NL
93, Department of Psychiatry and Psychotherapy, Medical Center of the University of Munich, Campus Innenstadt, Munich, DE
94, Institute of Psychiatric Phenomics and Genomics (IPPG), Medical Center of the University of Munich, Campus Innenstadt, Munich, DE
95, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, US
96, Behavioral Health Services, Kaiser Permanente Washington, Seattle, WA, US
97, Faculty of Medicine, Department of Psychiatry, University of Iceland, Reykjavik, IS
98, School of Medicine and Dentistry, James Cook University, Townsville, QLD, AU
99, Institute of Health and Wellbeing, University of Glasgow, Glasgow, GB
100, deCODE Genetics / Amgen, Reykjavik, IS
101, College of Biomedical and Life Sciences, Cardiff University, Cardiff, GB

102, Institute of Epidemiology and Social Medicine, University of Münster, Münster, NordrheinWestfalen, DE
103, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, DE
104, Department of Psychiatry, University of California, San Diego, San Diego, CA, US
105, KG Jebsen Centre for Psychosis Research, Norway Division of Mental Health and Addiction, Oslo University Hospital, Oslo, NO
106, Medical Genetics Section, CGEM, IGMM, University of Edinburgh, Edinburgh, GB
107, Clinical Neurosciences, University of Cambridge, Cambridge, GB
108, Internal Medicine, Erasmus MC, Rotterdam, Zuid-Holland, NL
109, Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases Discovery \& Translational Medicine Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, CH
110, Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, DE
111, Department of Psychiatry, Leiden University Medical Center, Leiden, NL
112, Virginia Institute of Psychiatric \& Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, US
113, Computational Sciences Center of Emphasis, Pfizer Global Research and Development, Cambridge, MA, US
114, Institute for Molecular Bioscience; Queensland Brain Institute, The University of Queensland, Brisbane, QLD, AU
115, Department of Psychiatry, University of Münster, Münster, Nordrhein-Westfalen, DE 116, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, CH
117, Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, DE 118, Amsterdam Public Health Institute, Vrije Universiteit Medical Center, Amsterdam, NL 119, Centre for Integrative Biology, Università degli Studi di Trento, Trento, Trentino-Alto Adige, IT
120, Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, DE
121, Psychiatry, Kaiser Permanente Northern California, San Francisco, CA, US
122, Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, GB
123, Department of Psychiatry, University of Toronto, Toronto, ON, CA
124, Centre for Addiction and Mental Health, Toronto, ON, CA
125, Division of Psychiatry, University College London, London, GB
126, Neuroscience Therapeutic Area, Janssen Research and Development, LLC, Titusville, NJ, US
127, Institute of Molecular and Cell Biology, University of Tartu, Tartu, EE
128, Psychosis Research Unit, Aarhus University Hospital, Risskov, Aarhus, DK
129, University of Liverpool, Liverpool, GB
130, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, DK
131, Human Genetics and Computational Biomedicine, Pfizer Global Research and
Development, Groton, CT, US
132, Psychiatry, Harvard Medical School, Boston, MA, US

133, Psychiatry, University of Iowa, Iowa City, IA, US
134, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, US
135, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Goettingen, Niedersachsen, DE
136, Human Genetics Branch, NIMH Division of Intramural Research Programs, Bethesda, MD, US
137, Faculty of Medicine, University of Iceland, Reykjavik, IS
138, Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, Zuid-Holland, NL
139, Psychiatry, Erasmus MC, Rotterdam, Zuid-Holland, NL
140, Psychiatry, Dalhousie University, Halifax, NS, CA
141, Division of Epidemiology, New York State Psychiatric Institute, New York, NY, US
142, Department of Clinical Medicine, University of Copenhagen, Copenhagen, DK
143, Department of Medical \& Molecular Genetics, King's College London, London, GB
144, Psychiatry \& Behavioral Sciences, Stanford University, Stanford, CA, US
145, NIHR BRC for Mental Health, King's College London, London, GB
146, Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, US
147, Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, US

References

1. Sorlie PD, Aviles-Santa LM, Wassertheil-Smoller S, et al. Design and implementation of the Hispanic Community Health Study/Study of Latinos. Ann Epidemiol 2010;20(8):629-41. doi: 10.1016/j. annepidem.2010.03.015
2. Lavange LM, Kalsbeek WD, Sorlie PD, et al. Sample design and cohort selection in the Hispanic Community Health Study/Study of Latinos. Annals of Epidemiology 2010;20(8):642-9. doi: 10.1016/j.annepidem.2010.05.006
3. Laurie CC, Doheny KF, Mirel DB, et al. Quality control and quality assurance in genotypic data for genome-wide association studies. Genet Epidemiol 2010;34(6):591-602. doi: 10.1002/gepi. 20516
4. Laurie CC, Laurie CA, Rice K, et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 2012;44(6):642-50. doi: 10.1038/ng. 2271
5. Genomes Project C, Abecasis GR, Auton A, et al. An integrated map of genetic variation from 1,092 human genomes. Nature 2012;491(7422):56-65. doi: 10.1038/nature 11632
6. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 2009;5(6):e1000529. doi: 10.1371/journal.pgen. 1000529
7. Howie BN, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3: Genes, Genomics, Genetics 2011;1:457-70.
8. Manichaikul A, Mychaleckyj JC, Rich SS, et al. Robust relationship inference in genome-wide association studies. Bioinformatics 2010;26(22):2867-73. doi: 10.1093/bioinformatics/btq559
9. Thornton T, Tang H, Hoffmann TJ, et al. Estimating kinship in admixed populations. Am J Hum Genet 2012;91(1):122-38. doi: 10.1016/j.ajhg.2012.05.024
10. Conomos MP, Miller MB, Thorton TA. Robust inference of population structure for ancestry prediction and correction of stratification in the presence of relatedness. Genetic Epidemiology 2015
11. Hek K, Demirkan A, Lahti J, et al. A genome-wide association study of depressive symptoms. Biological Psychiatry 2013;73(7):667-78. doi: 10.1016/j.biopsych.2012.09.033 [published Online First: 2013/01/08]
12. Levy D, DeStefano AL, Larson MG, et al. Evidence for a gene influencing blood pressure on chromosome 17: Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham Heart Study. Hypertension 2000;36(4):477-83.
13. Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. Control and Clinical Trials 1998;19:61-109.
14. Wassertheil-Smoller S, Shumaker S, Ockene J, et al. Depression and cardiovascular sequela in postmenopausal women: The Women's Health Initiative (WHI). Archives of Internal Medicine 2004;164:289-98.
15. Women's Health Initiative SHARe Project. Imputation Report - 1000 Genomes Project reference panel 2011 [Available from:
https://www.garnetstudy.org/sites/www/content/files/dataflowcleaning/WHI_SHARe_qc _report_1000G_final.pdf.
16. Browning B, Browning SA. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. American Journal of Human Genetics 2009;84:210-23.
17. Price AL, Patterson NJ, Plenge RM, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics 2006;38:904-09.
18. Bild DE, Bluemke DA, Burke GL, et al. Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol 2002;156(9):871-81.
19. Ursano RJ, Colpe LJ, Heeringa SG, et al. The Army study to assess risk and resilience in servicemembers (Army STARRS). Psychiatry 2014;77(2):107-19. doi: 10.1521/psyc.2014.77.2.107
20. Ripke S, O'Dushlaine C, Chambert K, et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013;45(10):1150-9. doi: 10.1038/ng. 2742
21. Delaneau O, Marchini J, Zagury JF. A linear complexity phasing method for thousands of genomes. Nat Methods 2012;9(2):179-81. doi: 10.1038/nmeth. 1785
22. Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3 (Bethesda) 2011;1(6):457-70. doi: 10.1534/g3.111.001198
23. Wassertheil-Smoller S, Shumaker S, Ockene J, et al. Depression and cardiovascular sequelae in postmenopausal women. The Women's Health Initiative (WHI). Arch Intern Med 2004;164(3):289-98. doi: 10.1001/archinte.164.3.289
24. Borhani NO, Applegate WB, Cutler JA, et al. Systolic Hypertension in the Elderly Program (SHEP). Part 1: Rationale and design. Hypertension 1991;17(3 Suppl):II2-15.
25. Radloff LF. The CES-D scale: a self-report depression scale for research in the general public. Appl Psychol Meas 1977;1:385-401.
26. Kessler RC, Calabrese JR, Farley PA, et al. Composite International Diagnostic Interview screening scales for DSM-IV anxiety and mood disorders. Psychol Med 2013;43(8):1625-37. doi: 10.1017/S0033291712002334

[^0]:

