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Major depressive disorder (MDD) is a common, complex psychiatric disorder and a leading cause of disability worldwide. Despite
twin studies indicating its modest heritability (~30–40%), extensive heterogeneity and a complex genetic architecture have
complicated efforts to detect associated genetic risk variants. We combined single-nucleotide polymorphism (SNP) summary
statistics from the CONVERGE and PGC studies of MDD, representing 10 502 Chinese (5282 cases and 5220 controls) and 18 663
European (9447 cases and 9215 controls) subjects. We determined the fraction of SNPs displaying consistent directions of effect,
assessed the significance of polygenic risk scores and estimated the genetic correlation of MDD across ancestries. Subsequent
trans-ancestry meta-analyses combined SNP-level evidence of association. Sign tests and polygenic score profiling weakly support
an overlap of SNP effects between East Asian and European populations. We estimated the trans-ancestry genetic correlation of
lifetime MDD as 0.33; female-only and recurrent MDD yielded estimates of 0.40 and 0.41, respectively. Common variants
downstream of GPHN achieved genome-wide significance by Bayesian trans-ancestry meta-analysis (rs9323497; log10 Bayes
Factor = 8.08) but failed to replicate in an independent European sample (P= 0.911). Gene-set enrichment analyses indicate
enrichment of genes involved in neuronal development and axonal trafficking. We successfully demonstrate a partially shared
polygenic basis of MDD in East Asian and European populations. Taken together, these findings support a complex etiology for
MDD and possible population differences in predisposing genetic factors, with important implications for future genetic studies.
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INTRODUCTION
Major depressive disorder (MDD) is the most common psychiatric
illness and a leading cause of disability worldwide.1,2 MDD is
modestly heritable (30–40%), may be genetically complex and
likely heterogeneous, complicating efforts to identify replicable
risk loci.3,4 The successful detection and interpretation of genetic
associations require both increased sample sizes5 and empirically
driven efforts to reduce phenotypic heterogeneity.6

Underpinning the success of genome-wide association studies
(GWAS) of numerous traits has been the emergence of large
research consortia.7 In addition to facilitating larger sample sizes,
many consortia are increasingly ancestrally diverse, enabling
identification of novel associations8–10 and independent replica-
tion of reported findings,11,12 as well as improving fine mapping of
implicated loci.13,14 Consistent associations at replicated loci have
been reported for psychiatric disorders15 and non-psychiatric
traits,8,11,16–18 and shared liabilities are often borne out by
genome-wide polygenic analyses.19–21

Whether genetic factors predisposing to MDD are shared across
ancestries is not well established, and two replicated genome-
wide significant associations for MDD in China had markedly lower
allele frequencies in Europeans and thus did not replicate.22–24

Allelic heterogeneity and population-specific genetic effects
have been reported for several complex traits;18,25,26 however,
the extent of differences across ancestries remains relatively
unexplored.
We sought to clarify the extent to which liability to MDD is

shared between European and East Asian populations via
collaboration between the Psychiatric Genomics Consortium
(PGC)22 and CONVERGE6 studies of MDD. We asked whether
observed directions of allelic effects are consistent across
populations, assessed the significance of cross-ancestry polygenic
scores and estimated the trans-ancestry genetic correlation of
MDD. We attempted to disentangle population differences from
those arising from ascertainment or phenotypic definition through
analyses of recurrent MDD and in female subjects. These meta-
analyses represent the largest trans-ancestry genetic study of
MDD to date.

MATERIALS AND METHODS
Ascertainment and genotyping
Sample ascertainment, SNP genotyping and quality-control procedures for
PGC and CONVERGE have been described previously.6,22 Individual sites
and sample sizes are presented in Table 1.

CONVERGE (China, Oxford and Virginia Commonwealth University
Experimental Research on Genetic Epidemiology): Briefly, all subjects
were Han Chinese women and had two or more episodes of MDD meeting
DSM-IV criteria. After applying quality controls modeled after the PGC
study, 10 502 samples (5282 cases and 5220 controls) and 6 242 619 SNPs
were retained for analysis.
PGC MDD: Samples included here comprise Stage 1 of the PGC MDD

study.22 Briefly, all subjects were of European ancestry, all cases were
assessed using validated methods and met DSM-IV criteria for lifetime
MDD, and the majority of controls were screened to exclude lifetime MDD.
Available data on number of depressive episodes were used to identify
recurrent cases (two or more episodes). Nine studies from the US,
Europe and Australia were genotyped using SNP arrays. Imputation was
performed with IMPUTE2 (ref. 27) using the 1000 Genomes Project data
(v3; GRCh37/hg19),28 resulting in a total of 13 381 627 autosomal and
X chromosome SNPs.

Polygenic risk score profiling and binomial sign tests
Each data set was filtered on the basis of statistical imputation information
(INFO) greater than 0.8 and minor allele frequency greater than 0.01 in
both CONVERGE and PGC overall; linkage disequilibrium (LD)-based
'clumping' was used to obtain an approximately independent set of SNPs
(r2o0.1) while preferentially retaining the most significant SNP within 500-
kb windows. We computed weighted polygenic scores (that is, log odds
ratio of the associated allele), based on varying P-value thresholds in the
'training set' results (that is, CONVERGE or PGC); P-value thresholds ranged
between 10−5 and 0.5. We evaluated the significance of case–control
differences using logistic regression and covarying ancestry-based
principal components and a study indicator variable. The predictive value
of these scores is reported in terms of Nagelkerke’s pseudo-R2 (fmsb
package in R).29

Using the same sets of SNPs and the same P-value thresholds, we
applied a binomial sign test to determine whether the number of SNPs
demonstrating consistent directions of allelic effects between CONVERGE
and PGC was greater than expected by chance (that is, a one-sided test of
whether this fraction is greater than 0.5).

Trans-ancestry genetic correlation
The recently developed popcorn software30 allows for estimation of the
trans-ancestry genetic effect correlation (ρg) using GWAS summary
statistics. Cross-ancestry reference scores, representing SNP-wise estimates
of the similarity of LD (with neighboring SNPs) between populations,
were calculated for East Asian (N= 286) and European (N= 379) subjects
from the 1000 Genomes Project (v3).28 For computational efficiency and
consistency with previously reported estimates of genetic correlation,
these calculations were based on ~ 1.2 M common SNPs present in
HapMap3 (ref. 31) following study-wise exclusion of SNPs with INFOo0.9
or minor allele frequencyo0.01%.
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We attempted to address possible heterogeneity by examining
estimates of genetic correlation within- and across-ancestries, and for
varying phenotypic definitions. Briefly, we divided the PGC and CONVERGE
studies into approximate halves, performing association analysis in each
subsample as described above, and subsequently estimating the genetic
correlations between these nonoverlapping halves. Within the PGC, we
randomly selected 5 of 10 studies (SEUR1), with the remaining five studies
taken as a comparison sample (SEUR2). We selected N= 30 of a possible 126
paired comparisons for which the sample sizes of each subset were
equivalent (~1:1). We followed an analogous procedure in CONVERGE,
selecting 12 of 24 sequencing batches (SASN1), with the remaining
12 batches taken as a comparison sample (SASN2). Within-ancestry
comparisons were between nonoverlapping subsets (for example, SEUR1
versus SEUR2) and utilized reference scores based on a single population,
calculated as described above. Cross-ancestry estimates were based on
comparisons of the full set of CONVERGE results to each of N= 60 subsets
from the within-PGC analysis. We compared cross-ancestry estimates for
lifetime MDD, recurrent MDD and females-only by paired Student’s t-tests.

SNP-based meta-analyses
Within each study, we tested for association between SNPs and affection
status by logistic regression with PLINK,32 using allelic dosages and
including ancestry principal components as covariates (plus a site indicator
in PGC analyses). Backward-stepwise regression was used to select
principal components demonstrating association (Po0.159) with each
diagnosis. We excluded SNPs with minor allele frequencyo0.01 or
INFOo0.5 in either CONVERGE or PGC (overall), or missing in greater
than equal to five of nine PGC samples. We analyzed the X chromosome as
previously described.22

We performed Bayesian meta-analyses of PGC and CONVERGE studies
using MANTRA.33 By leveraging population differences in local LD
structure, MANTRA has greater power to detect genetic effects demon-
strating allelic heterogeneity than traditional approaches assuming
random effects. When effects are consistent across studies, MANTRA is
effectively a Bayesian implementation of fixed-effects meta-analysis.
Interstudy genetic distances were calculated from the mean allele
frequency differences. We adopted a threshold of log10 Bayes factor
(log10BF) 47 for declaring genome-wide significance.

Gene-set enrichment analyses
We applied DEPICT34 to identify significantly enriched gene sets and
pathways in specific tissues and cell types. Briefly, genes in the vicinity of
associated SNPs are tested for enrichment for 'reconstituted' gene sets,
comprising curated sets expanded to include co-regulated loci. Tissue and
cell-type enrichment analysis is conducted by testing whether genes were
highly expressed in any of 209 MeSH annotations based on microarray
data for the Affymetrix U133 Plus 2.0 Array platform (Santa Clara, CA,
USA).35

Because DEPICT adjusts for potential sources of confounding and
multiple testing using precomputed GWAS of randomly distributed
phenotypes, we elected to use as input P-values from inverse variance
weighted (that is, fixed effects) meta-analysis of PGC and CONVERGE.
Recalling that MANTRA is effectively a Bayesian implementation of fixed-
effects meta-analysis when allele frequencies are similar between
populations, we considered this to be an appropriate strategy, if not
somewhat conservative.

Replication analyses
A total of 4504 cases and 7007 controls from 10 independent, European-
ancestry cohorts were available for replication (Table 1). These studies
represent recent additions to the PGC that were not included in the
previously published analysis.22 A brief description of each study site is
given in the Supplementary Material. At the time of writing, neither
comparable East Asian GWAS data sets nor subject-level data on the
number of depressive episodes were readily available. For analyses of
recurrent illness, we included those replication studies that specifically
ascertained recurrent cases.
For each phenotype definition, we identified independent (pairwise

r2o0.1 within 500-kb windows based on European 1000 Genomes
Project samples), significant autosomal SNPs (log10BF45) from the trans-
ancestry meta-analyses (10, 7 and 7 for MDD, female-only and recurrent
MDD, respectively). We tested these SNPs for association using logistic
regression and including ancestry principal components as covariates.
We performed inverse-variance weighted meta-analyses of the
replication samples using METAL. We also performed binomial sign tests
comparing the directions of allelic effects across discovery and replication
stages.

Table 1. Sample sizes by participating study site in discovery and replication phases

Phase Study Ancestry No. of controls No. of cases No. of recurrent

Discovery Bonn Mannheim EUR 1072 (48.3) 588 (64.1) 408 (66.7)
GenRED1 EUR 1097 (42.7) 1020 (70.8) 1020 (70.8)
GSK MPIP EUR 859 (67.6) 861 (67.4) 831 (67.3)
MPIP MARS 650 EUR 539 (54.5) 373 (55.2) 128 (59.4)
NTR/NESDA EUR 1727 (62.0) 1685 (69.2) 834 (71.2)
QIMR I317 EUR 960 (55.2) 1017 (61.0) 524 (65.6)
QIMR I610 EUR 748 (61.9) 433 (72.3) 250 (72.4)
RADIANT EUR 1549 (54.2) 1903 (70.5) 1441 (70.8)
RADIANT—Germany EUR 217 (53.9) 327 (65.7) 254 (70.5)
STAR*D EUR 447 (43.8) 1240 (58.6) 912 (59.1)
CONVERGEa EAS 5220 5282 5282

Replicationb Edinburgh EUR 285 (48.8) 372 (59.4) —

DepGenesNetwork EUR 470 (62.6) 471 (77.5) 471 (77.5)
GenRED2 EUR 474 (48.9) 830 (82.8) 830 (82.8)
Harvard i2b2 EUR 1067 (50.1) 806 (66.9) 806 (66.9)
Janssen EUR 1380 (60.5) 466 (68.2) 466 (68.2)
QIMR COEX EUR 526 (57.6) 565 (71.5) —

RADIANT—Irish cases EUR 340 (52.4) 109 (82.6) 109 (82.6)
RADIANT—US cases EUR 378 (51.9) 223 (78.5) 223 (78.5)
RADIANT—Denmark cases EUR 516 (40.7) 133 (69.9) 133 (69.9)
SHIP-LEGEND EUR 1087 (44.0) 366 (67.8) —

SHIP-TREND-0 EUR 484 (44.6) 163 (71.8) —

Totals Discovery 14 435 (71.3) 14 729 (78.4) 11 884 (82.2)
Replication 7007 (51.6) 4504 (72.3) 2572 (75.8)

Abbreviations: EAS, East Asian; EUR, European. Numbers of female subjects are displayed parenthetically. aAll cases and controls were female . bSee note in
Materials and methods section.
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RESULTS
Polygenic risk score profiling and binomial sign tests
We employed polygenic risk score profiling to determine whether
findings from CONVERGE or the PGC are, in aggregate,
significantly associated with the MDD status in the other study.
Scores based on PGC results were nominally associated with MDD
in CONVERGE (Figure 1; Supplementary Tables S1–S3), accounting
for ~ 0.1% of risk (Nagelkerke’s pseudo-R2 = 7.46 × 10− 4; P= 0.02).
Scores based on results for female-only yielded similar results
(Nagelkerke’s pseudo-R2 = 7.60 × 10− 4; P= 0.0141), whereas scores
for recurrent MDD were most strongly associated overall
(Nagelkerke’s pseudo-R2 = 0.00201; P= 6.56 × 10−5). Scores from
CONVERGE were nominally associated with MDD status in the PGC
data (Nagelkerke’s pseudo-R2 = 6.08 × 10− 4; P= 6.66 × 10− 3); these
scores yielded similar results when considering female-only
(Nagelkerke’s pseudo-R2 = 0.00111; P= 4.15 × 10− 3), and recurrent
MDD (Nagelkerke’s pseudo-R2 = 9.13 × 10−4; P= 2.02 × 10−3). How-
ever, only the results based on PGC-trained polygenic scores for
recurrent MDD remained significant after correction for multiple
testing (Supplementary Table S2).
We evaluated whether the observed fraction of results

displaying the same direction of allelic effects across studies was
significantly greater than expected by chance (that is, 50%) using
binomial sign tests. Supplementary Table S4 gives the number of
LD-independent SNPs considered, fraction of these SNPs display-
ing the same direction of effect in the other study and a one-sided
binomial test P-value. For lifetime MDD, we observed the largest
excess of same-direction effects in PGC for SNPs significant at
Po0.2 in CONVERGE (50.7%; binomial P= 1× 10− 3); this finding
remains significant after multiple-testing adjustment
(Supplementary Table S4). For the reverse comparison, the largest
excess of same-direction effects was observed for SNPS significant
at Po0.2 in PGC (50.5%; binomial P= 0.016).
Overall, the greatest excess of same-direction effects in

CONVERGE was observed for SNPs significant at Po0.1 in the

PGC recurrent MDD analysis (51.1%; binomial P= 3.05 × 10− 5); the
fraction of same-direction effects in the PGC was largest in the
female-only analysis, for SNPs significant at Po0.1 in CONVERGE
(50.9%; binomial P= 1.11 × 10−3). Although statistically significant
after correcting for multiple tests (Supplementary Table S4), the
observed excess of same-direction effects represents only a very
small deviation from expectation under the null hypothesis.

Trans-ancestry genetic correlation
Table 2 displays the results of the trans-ancestry genetic
correlation between East Asian and European populations. For
lifetime MDD (ρg = 0.332, 95% confidence interval (CI): (0.270,
0.394)), this was both significantly greater than zero
(Pρg40 = 7.23 × 10−26) and significantly less than one
(Pρgo1 = 1.40 × 10− 99), indicating a partially shared polygenic
basis of MDD risk between East Asians and Europeans. These
findings remain significant after correction for multiple tests.
By comparison, recurrent MDD and females-only yielded slightly

higher estimates of genetic correlation (Table 2). We compared
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Figure 1. Trans-ancestry association of polygenic risk scores with major depressive disorder. For scores based on results from PGC or
CONVERGE, the variance in risk explained in the other study is shown on the y axis in terms of Nagelkerke’s pseudo-R2; scores based on various
P-value inclusion thresholds are displayed as shaded bars. CONVERGE, China, Oxford and Virginia Commonwealth University Experimental
Research on Genetic Epidemiology; MDD, major depressive disorder; PGC, Psychiatric Genomics Consortium.

Table 2. Trans-ancestry genetic correlations between East Asian and
European MDD subtypes

Traita ρgb Pρg40 Pρgo1

Lifetime MDD 0.332 (0.270, 0.394) 7.23 × 10−26 1.40× 10− 99

Female-only MDD 0.402 (0.326, 0.477) 2.04× 10− 25 2.59× 10− 54

Recurrent MDD 0.410 (0.343, 0.477) 5.40× 10− 33 2.23× 10−66

Abbreviation: MDD, major depressive disorder. aEuropean prevalences of
lifetime, females-only and recurrent MDD were assumed to be 0.15, 0.20
and 0.105, respectively; prevalence of recurrent MDD among Chinese
women was assumed to be 0.08. bEstimates of ρg are displayed with
corresponding 95% confidence intervals.
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these estimates by assuming an approximately normal distribu-
tion for ρg and obtaining a Z-score for the difference in values;
these differences were found to be nominally significant for both
recurrent MDD (Pone-sided = 0.023) and females-only (Pone-sided =
0.044). We followed up these results by calculating genetic effect
correlation estimates based on comparisons of CONVERGE to
N= 60 random subsets of the PGC data (Supplementary Figure S1).
Compared with lifetime MDD (ρ

g
= 0.309; 95% CI: (0.290 0.327)),

estimates of ρg were significantly higher for females-only
(ρg= 0.372, 95% CI: (0.344,0.401); t(59) = 7.41, Pone-sided =
2.69 × 10−10) and recurrent MDD (ρg= 0.375, 95% CI: (0.362,
0.389); t(59) = 15.29, Pone-sided = 1.74 × 10-22).
To aid our interpretation of the cross-ancestry results, we

derived analogous within-ancestry estimates for East Asians
(ρg= 0.926, 95% CI: (0.967,0.967)) and Europeans (ρg = 0.807, 95%
CI: (0.856,0.856); Supplementary Figure S2). Notably, within-
ancestry analysis of East Asians yielded significantly greater
estimates of ρg (t(56.45) = 3.70, Ptwo-sided = 0.0005). However, as
CONVERGE represents a single study, actual population differ-
ences are confounded here with those arising from ascertainment
or heterogeneity in assessment methods and instruments among
participating PGC studies.

SNP-based meta-analyses
We observed the strongest overall evidence of association
experiment-wide between SNPs upstream of gephyrin (GPHN) at
14q23.3 (rs9323497; log10BF = 8.08) and lifetime MDD (Supple-
mentary Figures S3 and S4). Associated SNPs show marked
differences in allele frequencies between East Asian and European
populations and opposing directions of allelic effect in CONVERGE
and PGC (Supplementary Figure 4). This locus encodes a neuronal
assembly protein that anchors glycine and GABAA receptors to
the postsynaptic density in inhibitory neurons.36 Intriguingly, the
gephryin region exhibits an unusual ‘yin-yang’ haplotype structure
reflecting strong positive selection related to recent, rapid human
evolution,37 and has previously yielded suggestive evidence
of association with depressive symptoms in the general
population.38

A total of 10 independent associated SNPs (log10BF45) were
prioritized for replication (Supplementary Table S5;
Supplementary Figure S4); of these, three were in or near GPHN,
two represent previously reported associations in CONVERGE that
did not replicate in PGC6 and one was the strongest reported
association in the original PGC study.22 No single SNP in either the
females-only or recurrent MDD analyses attained genome-wide
significance (Supplementary Figure S3). From each of these
analyses, seven independent associated SNPs were taken forward
to the replication stage (Supplementary Tables S6 and S7).
We attempted to replicate these single-SNP associations in a

collection of independent replication samples (4504 MDD cases
and 7007 controls). For lifetime MDD, no single SNP yielded
nominally significant evidence of association (Po0.05) in fixed-
effects meta-analysis of these replication samples (Supplementary
Table S5). Replication analyses also failed to generate replication
support for SNP associations identified for females-only or
recurrent MDD (Supplementary Tables S6 and S7). Regional
association and forest plots for these SNPs are provided in the
Supplementary Figures S4–S6.
For selected SNPs from the trans-ancestry meta-analyses, we

assessed the significance of the observed fraction of SNPs
showing the same direction of effect across discovery and
replication phases; these fractions were 0.30 (P= 0.9453), 0.286
(P= 0.9375) and 0.571 (P= 0.5) for lifetime, females-only and
recurrent MDD, respectively.

Gene-set enrichment analyses
We used DEPICT to investigate whether particular pathways or
gene sets were enriched for associations with any of the
phenotypic definitions considered. For SNPs significant at
Po10−5 in meta-analyses of lifetime, females-only and recurrent
MDD (29, 24 and 27 independent loci, respectively), no single
pathway or gene set was significantly enriched, or contained more
significant genes than expected by chance, after correction for
multiple testing (q⩾ 0.20).
When we considered a more inclusive threshold (Po10− 4),

there were 167, 161 and 161 independent loci for lifetime,
females-only and recurrent MDD, respectively. Following correc-
tion for multiple testing, only central nervous system neuron
differentiation (GO:0021953) and axon cargo transport pathways
(GO:0008088) were found to be significantly enriched (qo0.05) in
the analysis of lifetime MDD. An additional 11 gene sets were
suggestively enriched (qo0.20) and included several ontology
terms related to neurodevelopmental processes (Supplementary
Table S8). Finally, no tissue or cell types were enriched for
associations with any definition of MDD (q⩾ 0.20), irrespective of
the significance threshold applied.

DISCUSSION
We have conducted a large, trans-ancestry meta-analysis repre-
senting, to our knowledge, the first systematic effort to analyze
European and Han Chinese studies of MDD. As expected, we
identified a shared, common polygenic basis of MDD between
these populations, as exemplified by an excess of same-direction
allelic effects, significant polygenic risk score profiling results and
modest estimates of genetic correlation.
We initially considered the simple hypothesis that disease-

relevant SNP effects would have similar sizes and directions of
effect across European and Han Chinese studies,39 without explicit
consideration of population differences arising from genetic drift
or divergent genetic architectures. Scores constructed from either
PGC or CONVERGE results were significantly associated with
lifetime MDD in the other study, albeit explaining a diminutive
fraction of risk. However, it is commonly observed that polygenic
prediction is generally poorer when ‘training’ and ‘testing’ data
sets do not originate from a single ancestral population, likely
attributable to differences in allele frequencies and patterns of
LD.20,21

Next, we applied the recently developed popcorn method30 to
obtain estimates of the genetic effect correlation between these
populations. Briefly, the genetic correlation is the correlation
coefficient of per-allele SNP effect sizes across populations. We
found that the genetic correlation of lifetime MDD was
significantly different from both zero and one, suggesting that
there is substantial but incomplete overlap in common SNP effects
predisposing to MDD in Europe and China. Of particular interest,
comparisons based on females-only or recurrent MDD, which
better recapitulated the ascertainment strategy in CONVERGE,
yielded significantly higher estimates of genetic correlation
despite an attendant reduction in sample size.
Given the extensive heterogeneity of MDD, and an expected

and demonstrable loss of power arising from between-study
differences in ancestry and ascertainment, our limited success in
identifying novel, replicable evidence of genome-wide significant
association is perhaps unsurprising. It is well understood that a
trait’s heritability—and by extension, a shared polygenic liability—
is a less important determinant of successful identification of
relevant associations than its underlying genetic architecture.
Considering the relatively low genetic correlations reported here,
we might expect an attenuation of statistical power to detect
individual variants, that is, as compared with a similarly sized
studies of the same ancestry. A concomitant, statistically
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significant enrichment of biologically relevant gene sets is taken
as an additional support for this interpretation.

Limitations
First, the absence of replicable associations with MDD in
ancestrally diverse populations precluded more pointed compar-
isons of specific genetic effects.
Our attempts to reduce the heterogeneity of MDD, namely by

focusing on two particular subtypes of illness, should be regarded
as preliminary. Furthermore, questions pertaining to both screen-
ing and ascertainment of controls were not addressed in the
current study, and could have reduced our power to detect
relevant variation. We expect that with larger sample sizes, future
studies will be sufficiently powered to address these issues.
Finally, by having conducted multiple separate analyses for

females-only and recurrent MDD, we increased the multiple-
testing burden. As these do not represent completely indepen-
dent analyses, we have not corrected exhaustively for the total
number of tests performed.

CONCLUSIONS
We have demonstrated a common polygenic basis of MDD that is
partially shared between European and Han Chinese populations.
Importantly, our findings appear to reinforce the idea that
subtyping of MDD may yield additional insight into its
etiology.40 Striking an advantageous balance between phenoty-
pically more homogeneous definitions of illness and sample size
represents an ongoing and nuanced challenge for genetic studies
of MDD.
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