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A B S T R A C T

Background: Recent advances in multilevel modeling allow for modeling non-hierarchical levels (e.g., youth in
non-nested schools and neighborhoods) using cross-classified multilevel models (CCMM). Current practice is to
cluster samples from one context (e.g., schools) and utilize the observations however they are distributed from
the second context (e.g., neighborhoods). However, it is unknown whether an uneven distribution of sample size
across these contexts leads to incorrect estimates of random effects in CCMMs.
Methods: Using the school and neighborhood data structure in Add Health, we examined the effect of neigh-
borhood sample size imbalance on the estimation of variance parameters in models predicting BMI. We dif-
ferentially assigned students from a given school to neighborhoods within that school's catchment area using
three scenarios of (im)balance. 1000 random datasets were simulated for each of five combinations of school-
and neighborhood-level variance and imbalance scenarios, for a total of 15,000 simulated data sets. For each
simulation, we calculated 95% CIs for the variance parameters to determine whether the true simulated variance
fell within the interval.
Results: Across all simulations, the “true” school and neighborhood variance parameters were estimated 93–96%
of the time. Only 5% of models failed to capture neighborhood variance; 6% failed to capture school variance.
Conclusions: These results suggest that there is no systematic bias in the ability of CCMM to capture the true
variance parameters regardless of the distribution of students across neighborhoods. Ongoing efforts to use
CCMM are warranted and can proceed without concern for the sample imbalance across contexts.

1. Introduction

Multilevel modeling (MLM) has become a staple of social science
and public health research, allowing researchers to examine macro-
level contextual effects across multiple settings, including students
within schools (Munoz and Chang, 2007; Kim and McCarthy, 2006;
Sellstrom and Bremberg, 2006), residents within neighborhoods
(Tendulkar et al., 2010; Pickett and Pearl, 2001; Leventhal and Brooks-
Gunn, 2000), and patients within hospitals (Rice and Alastair 1996). In
MLM, both fixed and random effects account for the clustering of in-
dividuals within context, while also generating effect estimates for the
contexts themselves (Diez-Roux, 2000). For more than two decades,
studies using MLM have demonstrated that contexts are important

determinants of health and behavior, even after accounting for in-
dividual characteristics and composition.

Recently, MLM researchers have begun to recognize the importance
of considering multiple contexts simultaneously. For instance, there is
growing interest in cross-classified multilevel modeling (CCMM)
(Goldstein, 1994; Rabash and Browne, 2001), which allows researchers
to examine instances when individuals are nested in non-hierarchical
contexts, such as when students attending the same school live in dif-
ferent neighborhoods and conversely when students from the same
neighborhood attend different schools. To date, CCMM has been used to
examine the impact of schools and neighborhoods on a variety of health
and behavioral outcomes (Dunn et al., 2015a, 2016, 2017, 2015b;
Townsend et al., 2012; De Clercq et al., 2014; Evans et al., 2016), as
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well as contextual effects of classrooms and teachers on educational
outcomes (Heck, 2009; Kim et al., 2010). A major advantage of CCMM
relative to MLM is that it enables researchers to avoid the “omitted
context bias”, wherein variance in a random effects model is mis-
attributed from the missing context to the included context, as the in-
cluded context “soaks-up” the effect of the missing context (Dunn et al.,
2015b; Evans et al., 2016).

Sample size requirements for MLM are well established (Dedrick
et al., 2009; McNeish and Stapleton, 2014). To generate unbiased es-
timates of random effects variance parameters, methodologists re-
commend between 5 and 20 lower level units (e.g., students) as a
minimum for each higher level unit (e.g., school) (McNeish and
Stapleton, 2014). Including some schools with a smaller sample size in
the data set is not problematic, however, because estimates for contexts
with small sample size are automatically down-weighted in MLM esti-
mation. Thus, most schools in the sample would need a minimum of
5–10 students to provide a reasonable estimate of the school-level
variance. However, similar guidelines are not yet available for CCMM,
raising questions about the minimum sample size required per unit of
analysis in the CCMM setting.

Further, there is uncertainty about whether random effect estimates
are sensitive to the sampling strategy and the potential imbalance of
sample size across units of analysis. Many researchers conducting
CCMM studies use data drawn from samples where only one context
was originally intended to be studied. For instance, school-based re-
searchers intentionally sample students by school, ignoring the dis-
tribution of students across neighborhoods. Because the dataset con-
tained information about both school features and neighborhood of
residence, researchers could fit a CCMM to estimate both school and
neighborhood-level random effects – even though neighborhoods were
not the primary sampling unit. As a result, the distribution of the
sample across neighborhood catchment areas may be uneven due to
schools being the primary sampling unit, potentially biasing estimates
of neighborhood-level effects. Small and imbalanced neighborhood
sizes could result in higher variability and imprecise estimates for
random effects and possible bias leading to inaccurate conclusions re-
garding contextual effects. As CCMM becomes more popular with re-
searchers encountering more non-nested data structures – particularly
in the case of group randomized control trials – it is essential to de-
termine whether estimates of contextual-level effects are biased when
the sample sizes are unevenly distributed across the two contexts stu-
died. If contextual effects are biased, it is also important to describe the
direction of that bias, whether toward or away from the null.

The current study aimed to address these questions by performing a
series of simulation analyses based on data from the National
Longitudinal Study of Adolescent to Adult Health (Add Health) (Harris
et al., 2009a, 2009b), one of the largest nationally representative sur-
veys in the U.S (Harris et al., 2015). Our goal was to determine the
extent to which a sample can be distributed unevenly across one higher-
level context before random effects variance estimates become biased.
Add Health was an ideal empirical dataset in which to ground these
simulations because it is widely used in public health and has already
linked contextual measures of schools and neighborhoods to health and
behavior. Further, it intentionally sampled from one context (i.e.,
schools were the primary sampling unit) and the sample was distributed
unevenly across a second context (i.e., neighborhoods). Additionally,
because Add Health was drawn to be nationally representative, the
distribution of students across schools and neighborhoods is a realistic
sample of school catchment areas within the U.S. While schools in the
sample each had a reasonable sample size, the neighborhoods those
students came from were not always well represented, with many
having only a single respondent. Furthermore, because of the rich in-
formation contextual information available, CCMMs are increasingly
being used in Add Health papers despite unanswered questions of their
validity prompted by the small neighborhood sample sizes. By an-
choring these simulations to a realistic example and commonly used

dataset, we ensure that our examination of CCMM validity is conducted
within a relevant parameter space with practical implications for future
Add Health studies. Body mass index (BMI) was chosen as the outcome
for this simulation because of its clarity for analysis purposes (measured
continuously and has an approximately Gaussian distribution) as well
as its salience as a public health issue (Baskin et al., 2005; Lawrence,
2004).

2. Methods

Empirical data from the Wave 1 in-home sample of Add Health was
used as a basis for the school and neighborhood data structure in our
simulations. There were 20085 students who attended 132 unique
schools and lived in 2410 unique neighborhoods. The school and
neighborhood data structure in the Add Health is cross-classified be-
cause students attending the same school often resided in different
neighborhoods and students living in the same neighborhood attended
different schools. Specifically, there were 2979 unique combinations of
school and neighborhood, with a median of 1 school per neighborhood
(range 1–3) and a median of 14 neighborhoods per school (range
1–234). Thus, the data were not purely hierarchical, but rather schools
in particular drew students from many neighborhoods.

Overall, school sizes in Add Health ranged from 20 to 1720 with
median 126.5 (interquartile range 85–174.5). Neighborhood sizes
ranged from 1 to 276 (median 2; interquartile range 1–5); 45% of
neighborhoods had only a single student while only 8% had 25 or more.
These values indicate a wide distribution in neighborhood sizes with
most falling in the lower range. While Add Health schools would appear
to have sufficient sample sizes, at least according to the rules for hier-
archical MLM, it was unclear whether this highly imbalanced neigh-
borhood design affects random effects variance estimates for neigh-
borhoods in CCMM.

2.1. Assignment of students to neighborhoods for the simulation
(determining balance)

To remain consistent with the existing cross-classified data struc-
ture, we maintained the number of students nested within each school
(range 20–1720; mean 152; median 126), as well as the number of
neighborhoods feeding into each school (range 1–234). With the
structure defined, we sorted students into neighborhoods for three
different levels of sample size balance across neighborhoods: perfectly
balanced, mildly imbalanced, and very imbalanced.

For the perfectly balanced scenario, the number of students within
each school was divided evenly across the neighborhoods sending stu-
dents to that school. Due to rounding, some schools had too many or too
few students; this was addressed by randomly subtracting or adding
from neighborhoods so that the number of students in each school was
consistent with the empirical data, each neighborhood still had at least
one student, and as close to perfect balance as possible was achieved.

For both imbalanced scenarios, we utilized a geometric distribution
to assign students to neighborhoods given the number of neighborhoods
per school. The probability of assignment to a given neighborhood k
given the initial proportion p, was calculated as:

= = −
−P X k p p( ) (1 )k 1 (1)

where p=initial proportion (probability of assignment to first neigh-
borhood) and k=given neighborhood sending students to a specific
school. P was set at 0.25 for the mildly imbalanced and 0.7 for the
imbalanced scenario, meaning that the first neighborhood for each
school was assigned 25% of students and 70% of students, respectively.
Fig. 1 illustrates the assignment of students to neighborhoods under the
balance scenarios for a hypothetical school with 60 students from 12
neighborhoods.

In practice, under both the mildly imbalanced and very imbalanced
scenarios this resulted in some neighborhoods with zero students
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assigned. To maintain the original data structure, each neighborhood
was forced to have at least one student, resulting in most schools having
either slightly too few or too many students relative to the original data
structure. This discrepancy between school sizes for our assignments
relative to the original data ranged from 97 fewer to 213 extra for the
mildly imbalanced scenario (median − 1) and 22 fewer to 228 extra in
the very imbalanced scenario (median + 9). Therefore, students were
subtracted or added from neighborhoods using the geometric dis-
tribution so that the total number of students in each school was con-
sistent with the empirical data while maintaining the minimum of one
student per neighborhood. Following these adjustments, the average
percent of students in the largest neighborhood for each school was
26% (range 5–100%; 56% included only one student) for the mildly
imbalanced case and 61% (range 9–100%; 84% included only one
student) for the very imbalanced case. Comparatively, the distribution
of students across neighborhoods in the empirical data fell close to our
mildly imbalanced scenario with the average percent of students in the
largest neighborhood for each school of 36% (range 2–100%; 45% in-
cluded only one student). Therefore, the distribution of students across
neighborhoods in the real Add Health data is encompassed by our
chosen range of simulated values allowing us to explore a relevant
parameter space.

2.2. Simulation of individual data and partitioning variance

To evaluate the impact of balance (or imbalance) on our ability to
estimate a “true” random effect (RE) variance estimate for both
neighborhood and school contexts, BMI values were assigned to the
simulated agents of the model, such that the “true” RE values for
schools and neighborhoods were known. Individual BMI values were
simulated to be consistent with the empirical data with mean 22.57 and
standard deviation 4.47 and following a Gaussian distribution. The total
variance in BMI was constant across all simulations at σtotal

2 = 20.0
along with the variance attributable to individuals at σindividual

2 = 19.0 so
that the total percent of variability accounted for by individual BMI
differences was 95%, which is consistent with the empirical Add Health
data. Thus the intra-class correlation (ICC) for the effect of neighbor-
hoods and schools was the remaining 5% of the total variance which
was differentially partitioned between schools and neighborhoods to
examine the effect of variance partitioning on parameter re-capture.
This degree of variance at the contextual level is comparable to other
studies with continuous outcomes, which have generally found that
4–7% of the variance is attributable to higher-level contexts (Dunn
et al., 2015a, 2015b, 2016). We chose five different scenarios to

partition this 5% variance: 1) attributed primarily to neighborhood,
very little to school (ICC = 4.5% and 0.5%, respectively); 2) attributed
majority to neighborhood, small proportion to school (ICC = 3.75%;
1.25%); 3) split equally between neighborhood and school (ICC =
2.5%; 2.5%); 4) attributed majority to school, small proportion to
neighborhood (ICC = 3.75%; 1.25%); 5) attributed primarily to school,
very little to neighborhood (ICC = 4.5%; 0.5%). For each variance
combination and level of balance, 1000 datasets were simulated re-
sulting in 15000 total simulations.

2.3. Statistical analysis

CCMM were fit using the GLIMMIX procedure in SAS (v9.3; Cary,
NC), which uses restricted maximum likelihood estimation. A null
cross-classified model (no predictors) was fit for each simulation, pre-
dicting BMI with a Gaussian response distribution and identity link
function. Random intercepts were included for school and neighbor-
hood. The fitted CCMM model predicting BMI (denoted y) with in-
dividuals (denoted i) simultaneously belonging to non-nested contexts
for school (denoted j) and neighborhood (denoted k) was the following
for a person i in school j and neighborhood k:

= + + +y β u u ei jk j k i jk( ) 0 0 0 0 ( ) (2)

In Eq. (2) above, β0 refers to the overall mean BMI (y) across all
schools and neighborhoods; u j0 refers to the random effect for schools,
u k0 refers to the random effect for the neighborhood and e i jk0 ( ) refers to
the random effect for the individual with the combination of school j
and neighborhood k.

Variance parameters from each model at the individual-, school-,
and neighborhood-level and their 95% confidence intervals were used
to calculate the percentage of times the true simulated variance parameter
was re-captured across 1000 simulations for each scenario of balance and
variance partitioning. Chi-squared tests were used to test for systematic
bias in variance parameter capture by balance and variance partitioning
scenario.

3. Results

Table 1 presents results from our simulations demonstrating the
percent of simulations in which the true neighborhood and school
variance parameters were successfully captured by the 95% CI. Across
all simulations, variance re-capture ranged from 93% to 96% for both
neighborhood and school variance. Overall, 5% of the simulations
failed to capture the neighborhood parameter (N = 804/15,000); of
this, 65% were underestimates and 35% were overestimates with
median bias in the variance of − 0.12 (range − 0.38 to 0.53). In ad-
dition, 6% of simulations failed to capture the school variance (N =
832/15,000) and of these, 85% were underestimates and 15% were
overestimates with median bias in the variance of − 0.15 (range −
0.43 to 0.48). Fewer than 1% of simulations (N = 69/15,000) failed to
re-capture both the school and neighborhood variance parameter. Re-
gardless of balance level, there was no difference in capture of the true
neighborhood variance parameter across the variance partitioning
scenarios (p = 0.59). Rates of school variance re-capture varied across
variance partitioning (p = 0.009); this difference was driven by slightly
lower rates of capture than expected when nearly all of the variance
was attributable to the school. Similarly, for each of the neighborhood
balance scenarios, there was no difference in the capture of the true
neighborhood variance parameter (p = 0.07) or the true school var-
iance parameter (p = 0.11) regardless of variance partitioning across
levels.

3.1. Balanced neighborhood size

When neighborhood size was close to perfectly balanced, true

Fig. 1. Probability of assignment to a given neighborhood under different
balance scenarios in a hypothetical example school with 60 students from 12
different neighborhoods.
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neighborhood variance was captured 95% of the time when almost all
of the variance was attributable to the neighborhood (ICCneighborhood =
4.5%); and 96% of the time when almost all of the variance was at-
tributable to the school (ICCschool = 4.5%). Among those where the true
neighborhood variance parameter was not captured (N = 240/5000),
neighborhood variance was underestimated 50% of the time by an
average of 0.18 (SD 0.04) and overestimated in 50% of simulations by
an average of 0.20 (SD 0.04). Capture of school variance parameter was
94% when neighborhood variance was large and 93% when school
variance was large. Across simulations where the true school variance
parameter was not captured (N = 303/5000), school variance was
underestimated in 84% of simulations by an average of 0.17 (SD 0.08)
and overestimated 16% of the time by an average of 0.25 (SD 0.09).
While these results are somewhat unsurprising given the advantages of
a balanced data structure, a setup rarely encountered in real social
science research, these results are consistent in the other imbalance-
scenarios as well.

3.2. Mildly imbalanced neighborhood size

Under the mildly imbalanced neighborhood size scenario (average
of 26% of students in the largest neighborhood), true neighborhood
variance was captured 95% of the time when neighborhood variance
was large and 94% when school variance was large. Among those
where the true neighborhood parameter was not captured (N = 279/
5000), neighborhood variance was underestimated 68% of the time by
an average of 0.15 (SD 0.05) and overestimated in 32% of simulations
by an average of 0.21 (SD 0.05). School variance capture was 94%
when either neighborhood or school variance was large. Across all si-
mulations where the true school variance was not captured (N = 254/
5000), school variance was underestimated in 87% of simulations by an
average of 0.17 (SD 0.08) and overestimated 13% of the time by an
average of 0.26 (SD 0.10).

3.3. Extremely imbalanced neighborhood size

When neighborhood size was extremely imbalanced (average of
61% of students from a school in a single neighborhood), the true
neighborhood variance was captured 95% of the time when neighbor-
hood variance was large and 93% of the time when school variance was
large. Among simulations where the neighborhood variance was not

captured (N = 285/5000), neighborhood variance was underestimated
75% of the time by an average of 0.18 (SD 0.07) and overestimated in
25% of simulations by an average of 0.25 (SD 0.09). School variance
was captured 96% of the time when school variance was small and 94%
of the time when school variance was large. Across all simulations
where the true school parameter was not captured (N = 275/5000),
school variance was underestimated in 84% of simulations by an
average of 0.19 (SD 0.07) and overestimated 16% of the time by an
average of 0.28 (SD 0.09).

4. Discussion

In this study, we examined the effect of neighborhood sample size
imbalance on the estimation of variance parameters in cross-classified
multilevel models (CCMMs) predicting BMI in a series of simulations
across a variety of neighborhood size/balance and variance partitioning
scenarios. Our results provide compelling evidence that true variance
parameters are captured by the 95% CI regardless of either the level of
(im)balance or the partitioning of variance across levels in CCMMs.
Furthermore, when this imbalance resulted in many neighborhoods
having very small sample sizes, this did not adversely affect the capture
of “true” random effect values. Across all levels of balance and variance
partitioning, capture of both neighborhood-level and school-level var-
iance were very high, ranging from 93% to 96%. Our findings indicate
that variance parameters are relatively unbiased by context size and
balance as the true variance parameters were captured in almost every
simulated sample and capture probabilities were all close to nominal
coverage of 95%. There were slight variations in parameter capture
depending on variance partitioning, but no differences by level of
neighborhood size balance.

Importantly, most of the simulations where either school or neigh-
borhood variance parameters were not successfully captured resulted in
underestimates of the parameter. This lends additional credence to the
validity of studies utilizing CCMM to detect contextual effects because
bias towards the null in those cases would be preferable to over-esti-
mation.

In our simulations, neighborhood variance was captured 95% and
94% of the time for the mild imbalance and extreme imbalanced sce-
narios, respectively while school variance was captured 96% and 95%
of the time. These results are reassuring and indicate that true con-
textual-level variance parameters have a high chance of being captured

Table 1
Percentage of times the true variance parameter is captured by 95% confidence intervals across 1000 simulations.

School Variance

σschool
2 (ICC)

Neighborhood Variance σneighborhood
2 (ICC)

0.90 (4.50%) 0.75 (3.75%) 0.50 (2.50%) 0.25 (1.25%) 0.10 (0.50%)

Neighbor-hood
(%)

School (%) Neighbor-hood
(%)

School (%) Neighbor-hood
(%)

School (%) Neighbor-hood
(%)

School (%) Neighbor-hood
(%)

School (%)

Balanced
0.90 (4.50%) 96% 93%
0.75 (3.75%) 94% 95%
0.50 (2.50%) 96% 93%
0.25 (1.25%) 96% 95%
0.10 (0.50%) 95% 94%
Mild imbalance
0.90 (4.50%) 94% 94%
0.75 (3.75%) 95% 96%
0.50 (2.50%) 94% 95%
0.25 (1.25%) 94% 95%
0.10 (0.50%) 95% 94%
Extreme imbalance
0.90 (4.50%) 93% 94%
0.75 (3.75%) 94% 95%
0.50 (2.50%) 95% 94%
0.25 (1.25%) 94% 93%
0.10 (0.50%) 95% 96%
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regardless of the relative imbalance of students across neighborhoods or
partitioning of the variance. The fact that reasonable estimates are
obtained for neighborhoods and schools even when the degree of im-
balance is more extreme than the empirical data is also encouraging.

This study has several limitations. First, we examined a single,
continuous and approximately normally-distributed outcome. Whether
these results generalize to a binary, ordinal, or non-normally-dis-
tributed outcome is unknown and warrant further exploration. Second,
we examined only three levels of neighborhood balance, which were
chosen to provide two relatively extreme scenarios (perfect balance and
extreme imbalance) and a middle-ground which is reflective of the true
Add Health data. Data sets with more extreme imbalance may still pose
problems for estimation. Third, we used the existing school and
neighborhood data structure of Add Health and did not consider
varying numbers of schools or neighborhoods per school, which may be
of concern for school and neighborhood studies other than Add Health.
However, grounding our example in Add Health provided a realistic
example of school and neighborhood distributions in the United States
and a wide range of neighborhoods per school (range 1–234), though
this data structure is certainly not representative of all possible school
and neighborhood allocations, especially those schools outside of the
U.S. Future studies should examine the impact of different numbers of
schools and neighborhoods identified in other cross-classified samples
or manipulate the theoretical number of neighborhoods per school.
Additionally, when simulating data, we assumed a total variance due to
school and neighborhood clustering of only 5% and did not consider
possibilities with larger or smaller contextual-level contributions;
however, the total contextual variance contribution was chosen to be
consistent with the literature for other continuous health outcomes
(Dunn et al., 2015b; Townsend et al., 2012). Finally, it is unknown how
sensitive variance capture is to choice of modeling algorithm; results
may vary slightly between restricted maximum likelihood estimates
(like those from SAS) and Bayesian Markov Chain Monte Carlo (MCMC)
techniques such as that employed by MLwiN software (Goldstein, 1994;
Browne, 2012; Rasbash et al., 2012) to fit cross-classified data struc-
tures. Comparison between variance parameters from restricted max-
imum likelihood using SAS and MCMC from MLwiN in the empirical
data yielded no material difference between either variance parameter
estimates or ICCs indicating modeling algorithm has little to no impact
on variance estimates.

In conclusion, our results suggest no inherent bias in the ability of
CCMM to capture true variance parameters at both neighborhood and
school-levels across a variety of neighborhood balance scenarios and
variance partitioning. Though our example focuses on schools and
neighborhoods, the results are applicable more broadly to non-nested
contexts. Thus, researchers using CCMMs may feel reassured that the
true variance is captured regardless of relative balance of context size
when modeling normally-distributed outcomes. Such insights are in-
formative, as CCMM is becoming increasingly used, software continues
to develop and algorithms become more efficient, resulting in CCMMs
becoming commonplace in epidemiologic research.
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