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ABSTRACT
BACKGROUND: Exposure to early-life adversity is known to predict DNA methylation (DNAm) patterns that may be
related to psychiatric risk. However, few studies have investigated whether adversity has time-dependent effects
based on the age at exposure.
METHODS: Using a two-stage structured life course modeling approach, we tested the hypothesis that there are
sensitive periods when adversity induces greater DNAm changes. We tested this hypothesis in relation to two
alternatives: an accumulation hypothesis, in which the effect of adversity increases with the number of occasions
exposed, regardless of timing; and a recency model, in which the effect of adversity is stronger for more proximal
events. Data came from the Accessible Resource for Integrated Epigenomic Studies, a subsample of mother–child
pairs from the Avon Longitudinal Study of Parents and Children (n = 691–774).
RESULTS: After covariate adjustment and multiple testing correction, we identified 38 CpG sites that were differ-
entially methylated at 7 years of age following exposure to adversity. Most loci (n = 35) were predicted by the timing of
adversity, namely exposures before 3 years of age. Neither the accumulation nor recency of the adversity explained
considerable variability in DNAm. A standard epigenome-wide association study of lifetime exposure (vs. no
exposure) failed to detect these associations.
CONCLUSIONS: The developmental timing of adversity explains more variability in DNAm than the accumulation or
recency of exposure. Very early childhood appears to be a sensitive period when exposure to adversity predicts
differential DNAm patterns. Classification of individuals as exposed versus unexposed to early-life adversity may
dilute observed effects.
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Exposure to childhood adversity, including poverty (1), abuse
(2,3), family dysfunction (4,5), and other stressors (6,7), is a
common and potent determinant of mental health across the
lifespan, increasing risk of childhood- and adult-onset psy-
chiatric disorders by at least twofold (8–10). Although the
biological mechanisms explaining this relationship are poorly
understood, accumulating evidence suggests that adversity
may become programmed molecularly, leaving behind bio-
logical memories that persistently alter genome function and
increase susceptibility to mental disorders. Indeed, dozens of
candidate gene and epigenome-wide association studies
(EWASs) in both animals and humans have shown that early-
life adversity is associated with persistent alterations in the
epigenome (11–15), including changes in DNA methylation
(DNAm), which is the most studied epigenetic mechanism
involving the addition of methyl groups to cytosines in the DNA
sequence (16,17). These differential DNAm sites can alter gene
expression, providing a mechanism by which gene by envi-
ronment interactions affect biological responses (18).

Recent evidence, particularly from animal studies, suggests
that epigenetic programming may be developmentally time
sensitive and that there may be sensitive periods (19,20) when
adversity exposure is more likely to induce DNAm changes.
For instance, rodent experiments have demonstrated the ex-
istence of sensitive periods for different aspects of epigenetic
regulation—from embryonic reprogramming to postnatal
exposure—leading to differences in epigenetic outcomes and
gene expression (21–25). Recent work in nonhuman primates
also suggests that there are differential effects on DNAm
based on whether adversity exposure, including maternal
separation, occurred at birth or later in development (26).
However, few human studies, whether candidate gene studies
(16,27–29) or EWASs (30–32), have examined the time-
dependent effects of psychosocial adversity on DNAm;
nearly all human epigenetic studies have instead focused on
the presence versus absence of exposure to early-life adver-
sity. Thus, it is unknown whether there are age stages at which
adversity differentially affects DNAm, children are therefore
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more vulnerable, and prevention efforts could be most
efficacious.

This study aimed to address this limitation by using data froma
prospective birth cohort of children to test the hypothesis that
there are sensitive periods associated with DNAm alterations
following adversity exposure. To test this hypothesis, we used a
two-stage structured life course modeling approach (SLCMA)
(33,34) to examine the effect of repeated exposure to seven types
of childhood adversities across three developmental periods (in
very early childhood, before 3 years of age; early childhood, 3–5
years of age; and middle childhood, 6–7 years of age) on DNAm
profiles at 7 years of age. Recognizing that alternative conceptual
models havebeenproposed to explain theeffects of adversity,we
also used the SLCMA to determine whether the sensitive period
model explained more variability in DNAm relative to two other
theoretical models described in the life course epidemiology
literature (35–37): 1) an accumulation model (38–40), in which the
effect of adversity on DNAm increases with the number of occa-
sions exposed, regardless of timing; and 2) a recency model (41),
in which the effect of adversity on DNAm is stronger for more
proximal events. Finally, to evaluate the potential advantage of the
SLCMA relative to the standard EWAS approach, which would
ignore the timing or frequency of adversity, we examined the
number of epigenome-wide significant loci identified by each
approach and evaluated their degree of overlap.

METHODS AND MATERIALS

Sample and Procedures

Data came from the Avon Longitudinal Study of Parents and
Children (ALSPAC), a population-based birth cohort (42–44).
TheALSPACgenerated blood-basedDNAmprofiles at birth and
7 years of age as part of the Accessible Resource for Integrated
Epigenomic Studies (ARIES), a subsample of 1018mother–child
pairs from the ALSPAC (45). The ARIESmother–child pairs were
randomly selected out of those with complete data across at
least five waves of data collection (Supplement 1).

Measures

Exposure to Adversity. We examined the effect of seven
adversities shownpreviously to associatewith epigeneticmarks
(46–48): 1) caregiver physical or emotional abuse (49–52); 2)
sexual or physical abuse (by anyone) (49–52); 3) maternal
psychopathology (53,54); 4) one adult in the household (55); 5)
family instability (29,56); 6) financial stress and/or poverty
(57,58); and 7) neighborhood disadvantage and/or poverty (59).
These adversities were chosen because they capture experi-
ences that deviate from a child’s expected social and physical
environment (60). Each adversity was measured via maternal
report on at least four occasions at or before 7 years of age either
from a single item or from psychometrically validated stan-
dardized measures. Specific time periods of assessment varied
across adversity type (Supplement 1). For each adversity type,
we generated three sets of encoded variables (Supplement 1): 1)
a set of variables indicating the presence of the adversity at a
specific developmental stage versus absence of the adversity at
that stage, to test the sensitive period hypothesis; 2) a single
variable denoting the total number of timeperiods of exposure to
a given adversity, to test the accumulation hypothesis; and 3) a

single variable denoting the total number of developmental pe-
riods of exposure, with each exposure weighted by the age of
the child during the measurement time period, to test the
recency hypothesis; this variable upweighted more recent ex-
posures, allowing us to determine whether more recent expo-
sures were more impactful.

DNA Methylation. DNAm was measured at 485,000 CpG
dinucleotide sites across the genome using the Illumina Infinium
Human Methylation 450K BeadChip microarray (Illumina, San
Diego, CA). DNA for this assay was obtained from cord blood at
birth and peripheral blood leukocytes at 7 years of age. DNA
was stored and extractions were completed at 5 to 8 years after
collection of cord blood and within 3 weeks after collection of
peripheral blood at age 7 (61). DNAm wet laboratory proced-
ures, preprocessing analyses, and quality control were per-
formed at the University of Bristol [Supplement 1 and Relton
et al. (45)]. DNAm levels are expressed as a b value representing
the proportion of cellsmethylated at each interrogatedCpGsite.

Prior to analysis, raw methylation b values, which are
preferred over M values because of their interpretability (62),
were normalized (63) to remove or minimize the effects of
variation due to technical artifacts. To adjust for DNAm varia-
tion due to cell-type heterogeneity in peripheral and cord blood
samples, we estimated cell counts from DNAm profiles (64)
and regressed these estimates from the normalized b values.
Additionally, to remove possible outliers, we winsorized the b
values at each CpG site, setting the bottom 5% and top 95%
of values to the 5th and 95th quantile, respectively (65).

Covariates. To adjust for baseline sociodemographic dif-
ferences in the cohort, all analyses additionally controlled for
the following variables, measured at birth (Supplement 1): child
race and/or ethnicity; child birth weight; maternal age; number
of previous pregnancies; sustained maternal smoking during
pregnancy; and parent social class (66). Justification for the
inclusion of parent social class as a covariate and alternative
results from analyses that exclude social class as a covariate
are presented in Supplement 1.

Data Analysis

Our primary analyses involved comparing the three theoretical
models using the SLCMA, which was originally developed by
Mishra et al. (34) and later extended by Smith et al. (33,67) to
analyze repeated exposure data across the life course
(Supplement 1). The major advantage of the SLCMA is that it
provides an unbiased way to compare multiple competing
theoretical models simultaneously and identify the most
parsimonious explanation for the observed outcome variation.
The SLCMA uses least angle regression (LARS) (68) and an
associated covariance test (69) to identify the single theoretical
model (or potentially more than one model working in combi-
nation) that explains the most outcome variation (R2).
Compared with other methods for structured life course anal-
ysis, LARS has greater statistical power (33) and does not
overinflate effect size estimates (68) or bias hypothesis tests
(69). The SLCMA has been used in several life course epide-
miology studies (70,71), including studies of other birth cohorts
(72,73). The LARS procedure functions under the same as-
sumptions as multiple linear regression.
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In the first stage, we entered the set of encoded variables
described previously into the LARS variable selection pro-
cedure (68). LARS identified the variable with the strongest
association with the outcome, thus identifying whether the
sensitive period, accumulation, or recency model was most
supported by the data. Therefore, for each CpG site, one
unique LARS model was selected for each of the seven types
of adversity. For each selected model, we performed a
covariance test of the null hypothesis that the variable selected
is unassociated with the outcome. With respect to multiple
testing, the covariance test p values are adjusted for the
number of variables included in the LARS procedure, control-
ling the type I error rate for each adversity type and CpG site.
To adjust for confounding during the first stage, we regressed
each encoded variable on the covariates and implemented
LARS on the regression residuals (67).

In the second stage, the theoretical model shown in the first
stage to best fit the observed data for a specific type of adversity

was then carried forward to a multiple regression framework,
where measures of effect were estimated. Positive effect esti-
mates thus indicate elevated (hyper-) methylation, and negative
effect estimates indicate decreased (hypo-) methylation. Only
models with a covariance test p value, 13 1027, the standard
Bonferroni correction threshold for epigenome-wide statistical
significance, were included in the second stage. The same
covariates were also included in the second stage. We
compared the distribution of theoretical models across the
Bonferroni-significant CpG sites with an omnibus c2 test, which
tested the null hypothesis that the theoretical models were likely
to be represented among the significant results in proportion to
the frequency in which they were tested.

To evaluate the loss or gain of information when using a
simpler versus more complex analytic approach, we also
performed seven EWASs (one for each type of adversity) to
evaluate the association between lifetime exposure to adver-
sity (coded as ever vs. never exposed) and DNAm across all
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C Figure 1. Exposure to adversity in the Accessible
Resource for Integrated Epigenomic Studies data
set. The figure displays the lifetime prevalence by 7
years of age of exposure to each adversity (labeled
as “total exposed”), the average correlation between
exposure to one type of adversity at one time point
and exposure to that same adversity at a second
time point (labeled as “correlation over time”), and
the average correlation between exposure to one
type of adversity and exposure to a second type of
adversity (labeled as “correlation with other adver-
sities”). (A) The lifetime prevalence of each adversity
varied by type. The most commonly reported ad-
versities were financial stress (31%) and maternal
psychopathology (29%). The remaining adversities
were less reported, but still common: caregiver
physical or emotional abuse (15%), neighborhood
disadvantage (15%), sexual or physical abuse (by
anyone; 13%), one adult in the household (13%),
and family instability (11%). (B) Among specific
types of adversity, exposures tended to correlate
over time, with neighboring time points being more
related than distant time points. For instance,
exposure to one adult in the household and neigh-
borhood disadvantage were most strongly corre-
lated over time (r = .54–.93 and r = .67–.89,

respectively), whereas exposure to family instability (r = .11–.74) and sexual or physical abuse (r = .02–.69) were more weakly correlated across time. (C) The
average correlation of having ever been exposed to the other adversities was modest across adversities, suggesting that we were capturing unique subtypes
of adversity.

Figure 2. A Manhattan plot displays top CpG sites
associated with exposure to adversity. In this Man-
hattan plot, the x-axis is the chromosomal position
for each CpG site and the y-axis is the2log10 p value
for the association between exposure to adversity
and DNA methylation values at each CpG site. The
dashed line shows the epigenome-wide significance
level, with each CpG site above the line representing
a statistically significant association (p , 1 3 1027).
The color of each CpG site refers to the type of
adversity. The shape of each CpG site indicates the
life course model tested. The sensitive period hy-
potheses were encoded as a circle for very early

childhood, a triangle for early childhood, and a square for middle childhood. The recency and accumulation hypotheses were encoded as a diamond. As
shown, CpG sites significantly affected by exposure adversity were distributed throughout the genome. There was no obvious genomic spatial pattern by
adversity type or timing of exposure.
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CpG sites. The EWAS results were then compared with the
SLCMA to determine whether the two approaches yielded
similar or distinct conclusions regarding the number of signif-
icant loci detected.

We also performed sensitivity analyses to evaluate the fit of
the LARS selection procedure, determine the degree of dif-
ferential methylation present at birth, and control for genetic
variation. We examined the biological significance of the

findings by 1) examining the correlation in methylation between
blood and brain tissue for the top CpG sites using an online
database (74); 2) investigating enrichment of regulatory ele-
ments annotated to false discovery rate (FDR)–significant CpG
sites; 3) performing a functional clustering analysis of all gene
ontology terms for genes annotated to FDR-significant sites in
DAVID 6.8 (75); and 4) assessing the selective constraint of
these genes using the Exome Aggregation Consortium (76).
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Figure 3. The figure illustrates the frequency at
which each life course theoretical model was chosen
for each type of adversity. Each plot displays the
number of CpG sites for which adversity significantly
predicted methylation, after controlling for cova-
riates and correcting for multiple comparisons using
(A) a Bonferroni threshold (p , 1 3 1027, n = 38
sites) and (B) a false discovery rate (FDR) correction
q , .05 (n = 380 sites). The distribution of theoretical
models chosen first by the least angle regression
procedure for top CpG sites was significantly
different from what would be expected by chance,
with exposure to adversity during sensitive periods,
especially during very early childhood, more
frequently predicting methylation.
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RESULTS

Sample Characteristics and Distribution of
Exposure to Adversity

Demographic characteristics of the ARIES analytic sample are
shown in Table S1 in Supplement 1 for the total sample and for
children exposed to any adversity (n = 650, 67%, experienced at
least one adversity at some point in their lifetime). Details on the
prevalence and correlations of exposure across time are also
reported in Figure 1 and Figure S1 and Table S2 in Supplement 1.
Of note, differences in the prevalenceof exposure across timeare
unlikely to affect model selection, as all variables are automati-
cally standardized by the LARS procedure.

Model Comparison and Effect Estimation

We identified 38 CpG sites (“top sites”) that were differentially
methylated at 7 years of age following exposure to adversity (p,
1 3 1027) (Figure 2). Methylation at most sites (n = 35) was
related to the developmental timing of exposure to adversity,
especially adversity during very early childhood, meaning be-
tween birth and age 2 years (Figure 3A). In fact, exposure to
adversity during very early childhood explained variability at
more CpG sites (22 in total) than expected, while the accumu-
lation and recencymodelswere associatedwith fewerCpGsites
than expected (one and two CpG sites, respectively; c2 = 7.40,
p = .02).

As shown in Table 1 and Figure 3A, neighborhood disad-
vantage was the type of adversity predicting the greatest
number of genome-wide methylation differences (10 CpG
sites), followed by financial stress (nine CpG sites), sexual or
physical abuse (by anyone) (five CpG sites), and one adult in
the household (five CpG sites). Maternal psychopathology,
caregiver physical or emotional abuse, and family instability
were associated with differences at four, three, and two CpG
sites, respectively.

Across all 38 top sites, exposure to adversity was typically
associated with hypermethylation (73.7% positive beta co-
efficients; c2 = 8.53, p = .004) (Table 1). On average, exposure
to adversity during a sensitive period was associated with a
2.5% difference in methylation level (b) after controlling for all
covariates (range 0.1%–14.2%). For the two CpG sites asso-
ciated with recency of exposure to financial stress, one addi-
tional adverse event was associated with a 0.3% to 0.4%
increase in methylation per year of age at the event. For the
single site associated with accumulation of exposure, one
additional adverse event was associated with a 0.5% decrease
in methylation. Of these 38 CpG sites, 14 remained statistically
significant after we imposed a more stringent p value threshold
that accounted for the testing of seven types of adversity (p =
[1 3 1027]/7 = 1.43 3 1028) (Table 1).

After relaxing the multiple testing correction threshold to
an FDR q , .05, there were 380 CpG sites affected by
exposure to adversity (Figure 3B, and Table S3 in
Supplement 2). As with the top 38 Bonferroni-significant
sites, methylation at 352 of the 380 FDR-significant sites
was best explained by sensitive period models (Figure 3B,
and Table S3 in Supplement 2). Exposure in very early
childhood explained methylation variation at more CpG sites
than expected from the background for neighborhoodT
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disadvantage (Figure S2 in Supplement 1). The effects of
adversity type and timing on methylation were distributed
throughout the genome (Figure S3 in Supplement 1).

Exposed Versus Unexposed Analysis

Across the seven EWASs, which separately evaluated the
effect of ever versus never exposed to each type of adversity
on CpG site DNAm, only one statistically significant result
emerged (Figure S4 in Supplement 1); this was for
cg02431672, a locus located on chromosome 1 79 kb away
from the gene FAM183A, and it was associated with exposure
to abuse (b = 2.005; p = 1.77 3 1028).

Overall, there was very little overlap in identified CpG sites
across the top SLCMA and EWAS results. Most of the top 38
sites had effect estimates that were larger in the SLCMA
compared with the EWAS (Figure 4). There was also little
overlap in findings across specific CpG sites. For example,
the cg02431672 locus, which was the top hit in the EWAS of
abuse, did not emerge as a top hit in the SLCMA of abuse,
failing to appear in the list of FDR-significant loci (p = .0138).
Similarly, the top CpG site in the SLCMA (cg19157140),
which suggested a sensitive period at 1.75 years of age
associated with the effects of neighborhood disadvantage,
was nonsignificant in the corresponding EWAS (b = .001; p =
.0002) (Figure 5). These results suggest that the SLCMA
allowed us to more effectively identify methylation differ-
ences among children with and without a history of exposure
to adversity.

Sensitivity Analyses

Evaluation of the LARS Selection Procedure. There
was no evidence in support of compound theoretical
models, whereby more than one theoretical model explained
the most outcome variability. For each of the top 38 CpG
sites, the marginal increase in variance of methylation
explained by additional steps of the LARS procedure was
not significant (each p . .05) (Figure S5 in Supplement 1),
suggesting that methylation was best explained by a single
theoretical model.

Evaluation of Methylation at Birth for Top CpG
Sites. Adversity-associated methylation differences occurred
during very early childhood for most top CpG sites. To assess
whether the observed differences in DNAm existed at birth, we
examined the effect of the selected exposure on DNAm in cord
blood for the top 38 sites. We found that DNAm differences at
birth were significant for only one of the 38 sites (p , .05/38, or
.00132), suggesting that the differences in DNAm at 7 years of
age mainly occurred after birth, as a result of exposure to post-
natal stressors (Table S4 in Supplement 2). Similar results were
obtained when examining the 380 FDR-significant loci, where
significantdifferencesatbirthweredetectedatonly six of the380
probes (Table S4 in Supplement 2). An example of a site differ-
entially methylated at birth and an example of a site non-
differentially methylated at birth are shown in Figure S6 in
Supplement 1.
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Figure 5. Comparison of epigenome-wide association study (EWAS) vs.
structured life course modeling approach (SLCMA) estimates for the top
CpG site identified in the SLCMA, cg19157140. The effect estimates and the
confidence intervals obtained from the EWAS approach comparing ever
exposed to never exposed to neighborhood disadvantage for cg19157140
are presented on the left. The stage 2 effect estimates and confidence in-
tervals obtained from the SLCMA comparing being exposed to neighbor-
hood disadvantage at 1.75 years of age with being unexposed at 1.75 years
of age for the same CpG site are displayed on the right. The top CpG site in
the SLCMA, which suggested a sensitive period at 1.75 years of age
associated with the effects of neighborhood disadvantage, was nonsignifi-
cant after correction for multiple testing (p = .0002) in the epigenome-wide
association study of neighborhood disadvantage.
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Correction for Genetic Variation. Genetic variation did
not appear to influence observed DNAm differences at the top
CpG sites. Using a database of methylation quantitative trait
loci of the ARIES cohort (77), there were 658 single nucleotide
polymorphisms associated with DNAm at 17 of the top 38
sites. After controlling for genetic variation at methylation
quantitative trait loci linked to these 17 sites, the effect of
exposure to adversity remained significant (each FDR q , .05;
Table S5 in Supplement 1), suggesting that adversity could
have caused these methylation differences distinct from ge-
netic sequence variation.

Exploring the Biological Significance of Findings

Correlation Between Blood and Brain Tissue. On
average, methylation in blood at the top 38 sites was slightly
positively correlated with methylation in four brain regions
(prefrontal cortex: ravg = .10, entorhinal cortex: ravg = .11, su-
perior temporal gyrus: ravg = .11, cerebellum: ravg = .06)
(Table S6 in Supplement 1). CpG sites with methylation that is
highly correlated between blood and brain tissue may be
indicative of important interindividual covariation (i.e., due to
adversity) or a strong genetic influence on methylation, while
those that are uncorrelated may still be biomarkers of a
response to adversity.

Enrichment of Regulatory Elements. As compared
with all autosomal loci tested, FDR-significant loci were
more likely to be located in gene promoters (c2 = 9.92, p =
.002) and less likely to be in gene enhancers (c2 = 3.86, p =
.049; Figure S7A in Supplement 1). Furthermore, the loca-
tion of FDR-significant loci differed from all other loci tested
relative to CpG islands (c2 = 42.92, p , .0001) (Figure S7B
in Supplement 1). With eFORGE 1.2 (78), we also tested
whether FDR-significant loci colocalize with markers of
transcriptional activity. FDR-significant loci were not
enriched for DNase I hypersensitivity sites or histone marks
in any tissue or cell type after correction for multiple
comparisons (each q . .05). The strongest trend for
enrichment was detected in the analysis of all histone
marks in fetal thymus cells (uncorrected p = .0007). Anno-
tations at each FDR-significant site are presented in
Table S3 in Supplement 2.

Biological Processes Potentially Affected by Adver-
sity. Genes near the FDR-significant sites (n = 365 genes)
corresponded to 158 clusters of gene ontology biological
process terms (75). The top 11 gene ontology term clusters,
including positive regulation of developmental growth, axon
development, and neuron apoptotic process, were more likely
to be represented than by chance (average enrichment
p , .05) (Figure S8 in Supplement 1).

Additionally, we uncovered evidence of functional
constraint for these genes. Genes annotated to FDR-
significant sites were more highly constrained, as measured
by the probability of intolerance to loss-of-function variation
from the Exome Aggregation Consortium (76), than the rest of
the autosomal genes tested (permutation p = .0001)
(Figure S9 in Supplement 1). This indicates a greater

importance of these genes, on average, to survival and
reproduction over human evolution.

DISCUSSION

This prospective study useddata froma large population-based
sample of children to test three competing life course theoretical
models describing the association between exposure to child-
hood adversity, measured repeatedly across the first 7 years of
life, andDNAmat 7 years of age. By comparing these theoretical
models to each other, we could evaluate which one explained
the most variation in DNAm. To our knowledge, this is the first
use of the SLCMA in an epigenome-wide context.

The main finding of this study is that the effect of adversity on
DNAm depends primarily on the developmental timing of expo-
sure. In our Bonferroni-corrected analysis, we identified 38 CpG
sites that were differently methylated following exposure to
adversity, with more than half of these loci showing associations
based on adversity occurring during very early childhood, mean-
ing before 3 years of age. Exposure in very early childhood was
associatedwith DNAmdifferences for nearly all adversity types. In
contrast, the effects of exposure in middle childhood were largely
detected only for arguably the most severe forms of adversity
exposure (e.g., sexual or physical abuse). These results are
consistent with those of at least one human longitudinal study (16)
and multiple animal studies (21,22,24,25) in emphasizing the ex-
istence of sensitive periods (19,20)—particularly occurring shortly
after birth—when epigenetic programming is maximally dynamic
in response to parental care disruptions and other environmental
inputs.The lackof detectable sensitiveperiods inone recent study
(32)maybedue to focusingonlyonadversitiesoccurringator after
5 years of age. Interestingly, neither the accumulation nor recency
of the adversity explained considerable variability in DNAm. The
observed DNAm differences were absent at birth, identified for a
range of adversities, and unrelated to genetic variation. The
absence of support for an accumulationmodel is surprising, given
previous research linking cumulative time spent in institutional
care to DNAm status in stress-related genes (29).

Perhaps more importantly, our results suggest that broad
classifications of individuals as exposed versus unexposed to
“early life” adversity—although commonly used—may dilute
observed effects and fail to detect DNAm differences among
people exposed to adversity during specific life stages. These
findings support the value of more detailed phenotyping, which
is meaningful given the trend in psychiatric genetics toward
minimizing phenotypic precision in the service of maximizing
sample size. The lack of overlap in identified loci across the
SLCMAandEWASsuggest that refinement of the environmental
phenotype—by treating each time point of exposure as
unique—maybetter capture underlying signal. Indeed, results of
a power analysis suggest that the EWAS of exposed versus
unexposed will be underpowered when the true underlying
relationship between exposure and outcome depends on the
timing or amount of exposure (Supplement 1). Thus, more
precise phenotyping could preserve study power and provide
more mechanistic insights to guide targeted interventions.

These findings also raise important questions regarding why
exposure to adversity in the first 3 years of lifemaybeparticularly
salient in influencing DNAm patterns. When adversity occurs
early in life, it coincideswith the initial and foundational sculpting

Sensitive Periods, Adversity, and DNA Methylation

Biological Psychiatry May 15, 2019; 85:838–849 www.sobp.org/journal 845

Biological
Psychiatry:
Celebrating
50 Years



of brain architecture. Experiences of childhood adversity, which
represent deviations from expected cognitive, social, and sen-
sory inputs (60), may be more likely to be wired into neural cir-
cuitry during this especially vulnerable stage in brain
development. Relatedly, DNAm patterns are known to be dy-
namicacross the life course. Itmaybe that very early exposure to
adversity produces more stable DNAm changes that persist
across the life course, in contrast with later exposure to adver-
sity. With more longitudinal studies of DNAm, the field of psy-
chiatric epigenetics will be better positioned to determine not
onlywhen are themost vulnerable life stages for DNAmchanges
to occur, but also the extent to which these adversity-induced
DNAm patterns persist over time.

Although these findings emphasize the importance of expo-
sure timing, greater insights are needed regarding the age
stages when adversity may be most harmful, as mixed results
have emerged among the small number of studies comparing
the effects of early versus later adversity. Some retrospective
studies have shown that adolescent DNAm patterns are more
strongly associated with life stress during adolescence than
earlier periods (27). However, other studies have found poten-
tially persistent effects of childhood adversity into adolescence
(31) and adulthood (11), even after accounting for subsequent
stress exposure. A recent study also found that the effects of
adversity timing may be gene specific (29). As epigenetic pat-
terns appear to vary over the life course (26,79), longitudinal
studies are needed to study the developmental trajectories of
DNAmandevaluate the extent towhich these adversity-induced
DNAm differences persist or attenuate over time, and operate
independently of or in interactionwith subsequent experience to
ultimately predict mental health outcomes. Ideally, these longi-
tudinal studies would include repeated measures of prenatal
and postnatal adversity exposure and investigate whether any
adversity-associated DNAm signatures predict psychopathol-
ogy. If our findings about the importance of sensitive periods do
replicate, these results would emphasize the need to prioritize
policies and interventions toward children exposed to adversity
within the first 3 years of life, when the biological effects of
adversity may be most profound.

Several limitations are noted. First, some adversity measures
were drawn from single items. Parents may have also under-
reported exposure to stigmatizing experiences (80,81), espe-
cially if they were implicated in the exposure (82). However, the
prevalence of several adversities, including those capturing
possible experiences of abuse, were similar to and even greater
than those reported from some nationally representative sam-
ples (9,83). Second, as with any longitudinal study, there was
attrition over time, which could result in bias owing to loss of
follow-up. However, ARIES children were sampled from among
those with the most complete longitudinal data. Within the field
of epigenetics, efforts are now underway to understand the
consequences of attrition and how potential biases arising from
attrition could be mitigated through multiple imputation or other
strategies. Third, we were unable to examine the impact of
experiencingmultiple adversities simultaneously, because each
adversity wasmeasured at a slightly different time point. Fourth,
theDNAmsampleswere obtained fromperipheral tissue andnot
the brain; multiple data sets, however, are starting to identify
limited though important shared DNAm patterns across central
nervous system and peripheral tissue (84). Fifth, wewere unable

to directly examine whether DNAm at the identified loci influ-
enced gene expression of the nearest genes. Future work using
a sample with both methylation and expression data is needed
to clarify the functional consequences of significant CpG sites.
Finally, the p values derived from the covariance tests could be
potentially inflated, as the test relies on asymptotic theories and
therefore does not theoretically guarantee the control of type I
error rate in a finite sample (69). However, the covariance test
might be a more sensitive method to detect signals compared
with other postselection significance tests that make fewer as-
sumptions (85). As the relative statistical power of the available
tests remains unclear, simulation studies are underway to
identify the best inference tools in different settings and the
statistical power of the SLCMA with varying effect sizes.

In summary, this study lends further support to the evidence
base showing that DNAm patterns are responsive to experience.
However, these results reveal that DNAm patterns may be most
influenced by exposures during sensitive periods in development.
Efforts may therefore be needed to move beyond crude compari-
sons of those exposed versus unexposed to early-life adversity.
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Sensitive Periods for the Effect of Childhood Adversity on DNA Methylation:   
Results from a Prospective, Longitudinal Study 

 
Supplement 1 

 

Sample and Procedures 

Data came from the Avon Longitudinal Study of Parents and Children (ALSPAC), a 

prospective, longitudinal birth cohort of children born to mothers who were living in the county 

of Avon, England (120 miles west of London) with estimated delivery dates between April 1991 

and December 1992 (1-3).  ALSPAC was designed to increase knowledge of the pathways to 

health across the lifespan, with an emphasis on genetic and environmental determinants. 

Approximately 85 percent of eligible pregnant women agreed to participate (N=14,541), and 99% 

of eligible live births (n=14,062) who were alive at one year of age (n=13,988 children) were 

enrolled. Response rates to data collection have been good (75% have completed at least one 

follow-up).  Ethical approval for the study was obtained from the ALSPAC Ethics and Law 

Committee and the Local Research Ethics Committee.  More details are available on the ALSPAC 

website, including a fully searchable data dictionary: 

http://www.bristol.ac.uk/alspac/researchers/access/.  The ARIES mother-child pairs were 

randomly selected out of those with complete data across at least five waves of data collection. 

The ALSPAC sample is comprised of predominately White (94.6%) children; the ARIES 

subsample used in this study is racially homogenous (97.23% White in the analytic sample). As 

genetic data were not available for one-eighth of the analytic sample, we inferred ancestry 

information using an epigenome-wide DNAm data based principal component analysis (4), which 

has been shown to reliably capture population structure even in the absence of genetic data. After 

adjusting for sex and cell counts, we found no apparent outlier or pattern of population 
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stratification (Figure S10). In light of these findings, adjustment for self-reported race/ethnicity as 

a covariate should be sufficient to address issues with respect to population stratification and allow 

us to maximize the statistical power of the analyses. 

 

Measures 

Exposure to Adversity 

Caregiver physical or emotional abuse.  Exposure to physical or emotional abuse was 

determined through mailed questionnaires administered separately to the mother and the mother’s 

partner.  Children were coded as having been exposed to physical or emotional abuse if the mother, 

partner, or both responded affirmatively to any of the following items assessed over six time-points 

(8 months, 1.75 years, 2.75 years, 4 years, 5 years, and 6 years): 1) your partner was physically 

cruel to your children; 2) you were physically cruel to your children; 3) your partner was 

emotionally cruel to your children; 4) you were emotionally cruel to your children.  Participants 

were informed that all of their responses were confidential, and reports of caregiver physical or 

emotional abuse were not reported to child welfare agencies, consistent with the lack of mandatory 

reporting laws in the UK (5, 6). 

Sexual or physical abuse.  Exposure to sexual or physical abuse was determined through 

an item asking the mother to indicate whether or not the child had been exposed to either sexual 

or physical abuse from anyone.  This question was included at six time-points: child ages 1.5 years, 

2.5 years, 3.5 years, 4.75 years, 5.75 years, and 6.75 years.  As noted above, reports of sexual or 

physical abuse were not reported to child welfare agencies.  

Maternal psychopathology.  Maternal psychopathology was determined using data from: 

1) the Crown-Crisp Experiential Index (CCEI), which includes separate subscales for anxiety and 
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depression (7, 8) ; 2) the Edinburgh Postnatal Depression Scale (EPDS) (9); and 3) a question 

asking about suicide attempts in the past 1.5 years.  These measures were collected from mothers 

at five time-points: child ages 8 months, 1.75 years, 2.75 years, 5 years, and 6 years of age.  

Consistent with prior ALSPAC studies (10) and previous cut-points established in the literature 

(see below), we coded children as exposed to maternal psychopathology if one or more of the 

following criteria occurred: 1) the mother had a CCEI depression score greater than 9 (8); 2) 

mother had a CCEI anxiety score greater than 10 (8); 3) mother had an EPDS score greater than 

12 (9); or the 4) mother reported a suicide attempt since the time of the last interview.   

One adult in the household.  Mothers indicated the number of adults (>18 years of age) 

living in the household at five time-points: when the child was 8 months, 1.75 years, 2.75 years, 4 

years, and 7 years.  Children were coded as exposed if there were fewer than two adults in the 

household.  

Family instability.  Mothers indicated whether the child had: 1) been taken into care; 2) 

been separated from their mother for two or more weeks; 3) been separated from their father for 

two or more weeks; or 4) acquired a new parent.  These items were completed at six time-points: 

when children were ages 1.5 years, 2.5 years, 3.5 years, 4.75 years, 5.75 years, and 6.75 years.  

Children were coded as exposed if at least two of these events occurred at a single time point.  

Although being placed in foster care versus being separated from parents could reflect 

fundamentally different experiences of family instability, these four events were combined to 

create a binary measure of exposure because: 1) the prevalence of being taken into care or 

acquiring a new parent was too low for these experiences to be examined as separate measures; 2) 

separation from caregivers, especially in early life, can result in behavioral changes (11) and has 

been found to have a profound effect on development (12).  
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Financial stress.  Mothers indicated the extent to which the family had difficulty affording 

the following: 1) items for the child; 2) rent or mortgage; 3) heating; 4) clothing; 5) food.  Each of 

the 5 items was coded on a Likert-type scale (1=not difficult; 2=slightly difficult; 3=fairly difficult; 

4=very difficult).  These items were completed at five time-points: when children were ages 8 

months, 1.75 years, 2.75 years, 5 years, and 7 years.  Children were coded as exposed if their 

mothers reported at least fair difficulty for three or more items at each time point; this cut-point 

corresponds to response option 3 on a 4-point scale, with a higher score reflecting more difficulty.  

Neighborhood disadvantage.  At four time-points, when children were 1.75 years, 2.75 

years, 5 years, and 7 years of age, mothers indicated the degree to which the following were 

problems in their neighborhood: 1) noise from other homes; 2) noise from the street; 3) garbage 

on the street; 4) dog dirt; 5) vandalism; 6) worry about burglary; 7) mugging; and 8) disturbance 

from youth.  Response options to each item were: 2=serious problem, 1=minor problem, 0=not a 

problem or no opinion.  Items were summed, yielding scores ranging from 0-16.  Children with 

scores of eight or greater, which generally corresponded to the 95th percentile, were classified as 

exposed to neighborhood disadvantage.  

 

DNA Methylation   

 As described elsewhere (13), DNAm was measured at 485,000 CpG dinucleotide sites 

across the genome using the Illumina Infinium Human Methylation 450K BeadChip microarray, 

which captures DNAm variation at 99% of RefSeq genes (17 CpG sites per gene, on average). 

Bisulfite treatment of DNA extracted from cord blood and peripheral blood leukocytes was 

performed using the Zymo EZ DNA MethylationTM kit. The arrays were scanned using an 

Illumina iScan and initial quality review was assessed using GenomeStudio (version 2011.1).   
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 The proportion of molecules methylated at each interrogated CpG site on the array was 

detected using the Illumina 450K BeadChip assay. The estimated level of DNA methylation at 

HDFK�&S*�VLWH�ZDV�H[SUHVVHG�DV�D�µEHWD¶�YDOXH��ȕ���GHILQHG�DV�WKH�UDWLR�RI�the intensity measured 

by the methylated probe and the sum of the overall intensity and a recommended offset value ߙ = 

100 �ȕ = intensity of the Methylated allele (M) / intensity of the Unmethylated allele 

(U) + intensity of the Methylated allele (M) + 100). 7KH�ȕ�YDOXH�UDQJHV�IURP����QR�PHWK\ODWHG�

dinucleotides observed) to 1 (all dinucleotides methylated). The preprocessing analyses were 

performed using R (version 3.0.1). Background correction and subset quantile normalization 

within each time poLQW� ZHUH� DSSOLHG� WR� WKH� UDZ� PHWK\ODWLRQ� ȕ-values following the pipeline 

developed by Touleimat and Tost (14) to remove or minimize the effects of variation due to 

technical artifacts. Additionally, a post-hoc correction for white blood cell heterogeneity was 

performed, as cell heterogeneity may confound DNA methylation measurement yet whole blood 

cell counts were not obtained for the majority of ALSPAC samples. The estimateCellCounts 

function in the minfi Bioconductor package implemented in R (15) was used to estimate the 

fraction of different cell types (CD8 T cells, CD4 T cells, NK cells, B cells, monocytes, and 

granulocytes).  

  To minimize potential confounding by batch effects, all samples in ARIES were distributed 

across slides semi-randomly (to represent all time points on each array). A laboratory information 

management system (LIMS) was built to record the batch variables as well as the quality control 

(QC) metrics from the standard control probes for each sample. The QC procedure consisted of 

excluding samples with average probe P-YDOXH� ������ IURP� IXUWKHU� DQDO\VLV�� VFKHGXOLQJ� UHSHDW�

assay for those failed samples, and comparing genotype probes with the same individual’s SNP-

chip data to correct any sample mismatches. For the last step, if no genome-wide SNP data were 
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available for that individual yet a sex-mismatch based on X-chromosome methylation was present, 

the sample was flagged.  

 

Data Analysis 

Overview of the Structured Life Course Modeling Approach (SLCMA)  

Our analyses were based on a structured life course modeling approach (SLCMA), which 

was originally developed by Mishra (16) and later extended by Smith (17, 18) to analyze repeated, 

binary exposure data across the life course.  The goal of the SLCMA is to identify the single life 

course theoretical model (or potentially more than one life course theoretical model working in 

combination) that explains the most outcome variation (R2).  Table S8 summarizes the life course 

theoretical models tested in this study, using exposure to abuse as an example.  

As summarized in text, the SLCMA is performed in two stages.  In the first stage, a set of 

encoded variables are entered into the LARS variable selection procedure (19).  Thus, for each 

subject, exposure to the ith adversity (i = 1,2, …, 7, denoting the seven types of adversity mentioned 

in Measures) was encoded based on three theoretical models:  

Sensitive period. The sensitive period hypothesis tests if the presence of exposure at a 

specific time point explains the most variance in the outcome. Formally, for the jth time point of 

assessment (j = 1, 2, ..., Ji,  J୧  4, the value of J is dependent on the type of adversity as described 

in the Measures section above),      

Hୗ,୧୨ = b୧୨, where b୧୨ =  ቊ0, no exposure to the i୲୦adversity at the j୲୦ timepoint 
1, exposure to the  i୲୦adversity at the j୲୦ timepoint  

 

 Accumulation. The accumulation hypothesis tests whether the total impact of the ith 

adversity reported across all time periods explains the most variance in the outcome. The variable 

is formally defined as:  
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Hୟୡୡ୳୫୳୪ୟ୲୧୭୬,୧ = b୧୨



୨ୀଵ

 

Recency. The recency hypothesis is defined by a weighted sum of exposure across all time 

periods. It tests if temporal proximity to the adverse events explains the most variance in the 

outcome. The variable is formally defined as:    

H୰ୣୡୣ୬ୡ୷,୧ =  b୧୨



୨ୀଵ

 ×  age୧୨ 

 

Covariates 

Beyond the technical adjustments described earlier, we additionally controlled for the 

following variables, measured at child birth: child race/ethnicity (0=non-White; 1=White); child 

birth weight; number of previous pregnancies (between 0-3+); maternal age (0=ages 15-19, 

1=ages 20-35, 2=age>35); parent social class (i.e. the highest social class of either parent: 

1=foreman; 2=manager; 3=supervisor; 4=lending hand; 5=self-employed; 6=none of these); and 

sustained maternal smoking during pregnancy (0=non-smoker; 1=smoker in two or more 

trimesters, including the third trimester) (20).  Given that we were modeling maternal 

psychopathology explicitly as an adversity exposure, that polygenic risk scores for mood disorders 

have been found to poorly predict maternal depression in ALSPAC (21), and applications of 

polygenic risk scores have not yet been widely incorporated into epigenetic analyses, we did not 

adjust for maternal genomic liability to psychopathology in our analyses. 

Correction for Multiple Testing 

 To assess the sensitivity of our results to a Bonferroni-correction threshold (p<1x10-7), we 

additionally used a more liberal false discovery rate threshold (FDR q<0.05). This allowed an 
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analysis of the distribution of theoretical models chosen across FDR-significant sites. With this 

larger number of sites, we sought to determine whether the distribution of theoretical models 

selected differed between these FDR-significant (q<0.05) sites and the background, estimated as 

the non-FDR significant sites (q>0.05).  Additionally, an expanded set of genes annotated to all 

sites surpassing a more liberal threshold (FDR q<0.05) increased our power to test for enrichment 

of regulatory elements and biological processes (Gene Ontology (GO) terms). 

 

Sensitivity Analyses 

 To evaluate the sensitivity of our results to specific analytic strategies, we conducted four 

sensitivity analyses.  First, we evaluated the LARS variable selection procedure by examining later 

steps of the LARS procedure (additional theoretical models chosen) for the top CpG sites. For each 

top site, we calculated the variance explained by additional steps, and assessed the significance of 

the increase with a covariance test at each step. 

 Second, because some adversities exist prenatally and could affect methylation in utero, 

we assessed methylation at birth in umbilical cord blood at the top CpG sites. Sample collection, 

laboratory procedures, and quality control are described elsewhere (13). Methylation beta values 

were normalized (14), corrected for cell count heterogeneity (22), and Winsorized (23) to remove 

outliers following the quality control for age 7 DNAm as described above. At each top CpG site, 

we tested the predictive value of the theoretical model chosen at age 7 on methylation at birth with 

linear regression, controlling for the same covariates as described previously. We used a 

Bonferroni correction to adjust the alpha level for multiple testing. 

 Third, because methylation can be influenced by genetic variation, we assessed whether 

any of our top sites were affected by methylation quantitative trait loci (mQTLs), using a recently 
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published database of mQTLs of the ARIES dataset (mQTLdb: (24)). We downloaded the list of 

mQTLs at age 7, and filtered the data to our top CpG sites. Children were genotyped using the 

Illumina HumanHap550 quad chip; imputation was performed to the 1000 Genomes (phase 1, 

version 3, release Dec 2013) reference population using IMPUTE v2.2.2 (25). Variants were 

filtered by minor allele frequency (MAF>0.01), Hardy-Weinberg equilibrium (HWE>5x10-7), and 

imputation quality (info>0.8); subjects were filtered by missing genotype rate (missingness<3%) 

and cryptic relatedness (r<0.1). For each top CpG site with 5 or fewer associated SNPs, we 

included minor allele dosages as additional covariates in a linear regression testing the theoretical 

model chosen, controlling for the same covariates as described previously. For each top CpG site 

with more than 5 associated SNPs, we filtered SNPs by call rate (>97%) and ran a principal 

components analysis among all SNPs associated with each CpG. The top 5 principal components 

were used as covariates to represent genetic variation in downstream analyses.  

 Fourth, as not all CpG sites on the epigenome are variable, we restricted the analyses to 

variable CpG sites using an empirical data reduction approach (26). We removed CpG sites with 

less than 5% change in beta between the 10th and 90th percentile and were left with 292,686 variable 

probes, resulting in a more liberal Bonferroni corrected p-value threshold of p<1.71x10-7. The new 

threshold would allow us to identify 10 additional probes, all of which were already included in 

the list of 380 probes after FDR correction as presented in Table S3. We have added a footnote in 

Table S3 to highlight the 10 additional hits passing the less stringent p-value threshold. 

 

Epigenome-Wide Association Study (EWAS) with Exposed vs. Unexposed to Adversity 

 To evaluate the loss or gain of information when using a simpler versus more complex 

analytic approach, we also performed seven EWASs (one for each type of adversity) to evaluate 
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the association between lifetime exposure to adversity before age 7 (coded as ever versus never 

exposed) and DNAm across all CpG sites.  The EWAS results were then compared to the SLCMA 

to determine if the two approaches yielded similar or distinct conclusions regarding the number of 

significant loci detected. 

Analyses that compare the outcome of DNAm between exposed and unexposed groups 

assume that the true relationship between exposure and outcome does not depend on the timing or 

amount of exposure. When this assumption is not valid, for example under a true sensitive period, 

accumulation or recency model, then such analyses will be underpowered when compared with 

the analyses presented in the main paper. To illustrate this, we will first present a summary of the 

proof showing how regression of the outcome on exposed vs. unexposed suffers when the true 

underlying relationship is a sensitive period model, accompanied by explanations in the context of 

the current study. The summary is followed by a mathematical proof that shows in details how the 

test statistics are derived. 

Suppose that the outcome Y depends on the exposures ଵܺ,ܺଶ, … , ܺ through the sensitive 

period linear model 

ܻ = ߚ + ଵܺ௦ߚ + ߝ  ,ߝ   .(ଶߪ,0)ܰ

Regression of Y on ܺ௦  (i.e., fitting the correct sensitive period model) will give an average 

regression coefficient of ߚଵ. 

 Now let ܺ௬ be the variable indicating exposure at any of the measurement occasions, so 

ܺ௬ = ൜0 if ଵܺ = ܺଶ = ڮ = ܺ = 0
1 otherwise.

 

Regression of Y on ܺ௬  (i.e. fitting an exposed vs. unexposed model) will give an average 

regression coefficient of  
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௦
௬

 ଵߚ

where ௦ and ௬ are the prevalences of ܺ௦ and ܺ௬ respectively. Since ௬   ௦, this average

regression coefficient will be smaller than that found by fitting the correct sensitive period model.  

As an example, family instability had a prevalence of 4% in very early childhood, but an 

overall prevalence of 16%. The size of the regression coefficient from an exposed vs. unexposed 

analysis will be, on average, 0.25 times the size of the regression coefficient estimated for the very 

early childhood sensitive period model. 

 The average R2 resulting from regression of Y on ܺ௬ will be 

ܴ௦ଶ
௦/(1 െ  (௦

௬/(1 െ (௬
 

where ܴ௦ଶ is the average R2 resulting from regression of Y on ܺ௦. The above odds ratio will always 

be smaller than 1, since the odds of ܺ௦ will be smaller than the odds of ܺ௬.  

For family instability in very early childhood, where the odds were 0.04 and 0.19 

respectively, the R2 from the exposed vs. unexposed will be 0.21 times that of the R2 for the very 

early childhood sensitive period model. 

 The average standardized test statistic resulting from regression of Y on ܺ௬ will be 

௦ඨݖ
௦/(1 െ  (௦

௬/(1 െ ௬)ඨ
ଶߪ

ଶߪ + ௬)௦ଵଶߚ െ ௬/(௦
 

where ݖ௦ is the average standardized test statistic resulting from regression of Y on ܺ௦. Note that 

both the fractions inside the square roots will always be smaller than 1.  

For the family instability in very early childhood sensitive period, we estimated ߚଵ = 0.08 

and ߪଶ = 0.0003, leading to a test statistic of ݖ௦ = 4.71 and a p-value of 2.5 x10-6. However, the 
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test statistic for the exposed vs. unexposed model drops to 2.06, with an associated p-value of 

approximately 0.04. 

Simulation studies (17) have shown that LARS can select the correct sensitive period on 

80% of occasions, in samples smaller than ours with greater correlation between exposures. The 

power lost through having to choose the correct sensitive period is less substantial than the drop 

in regression coefficient, test statistic, and R2 typically associated with fitting an exposed vs. 

unexposed model instead of the correct sensitive period model. 

 

Theorem:  

Let ଵܺ,ܺଶ, … , ܺ denote the J exposure variables, Y denote the outcome that depends on 

the exposure through the sensitive period linear model ܺ௦ . Let ܺ௬  be the variable indicating 

exposure at any of the measurement occasions, so 

ܺ௬ = ൜0 if ଵܺ = ܺଶ = ڮ = ܺ = 0
1 otherwise.

 

The average standardized test statistic resulting from regression of Y on ܺ௬ (ݖ௬) will be larger 

than the standardized test statistic resulting from the true sensitive period model (ݖ௦), i.e., the 

Exposed vs. Unexposed analysis will be underpowered.    

  

Proof:  

We assume that the true underlying model is  

ܻ = ߚ + ଵܺ௦ߚ + ߝ  ,ߝ   .(ଶߪ,0)ܰ

Fitting the ever exposed vs. unexposed model,  

 ܻ = መ,௬ߚ +    ,መ௬ܺ௬ߚ

On average,  
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 ܺ௬  ܻ


 =  ݊ܲ൫ܺ௬ߚ 0 = 0൯ +  ݊ܲ൫ܺ௬ߚ 1 = 1 & ܺ௦ = 0൯ + ߚ) 1 + ଵ) ݊ܲ(ܺ௦ߚ = 1)

 =  ݊൫1ߚ 0 െ ௬൯ + ௬ ݊൫ߚ 1 െ ௦൯ + ߚ) 1 + ௦݊ (ଵߚ
= ݊൫௬ߚ + .ଵ൯ߚ௦

 

Therefore on average,  

መ௬ߚ  =   
σ ܺ௬  ܻ/݊ െ (σ ܺ௬ /݊)(σ ܻ/݊)

σ ܺ௬ 
ଶ /݊ െ ൫σ ܺ௬  ൯ଶ

 

 =  
ߚ ௬ + ߚ௦ െ ߚ)௬ +  (ଵߚଵ

௬ െ ௬ଶ

=  
௦
௬

.ଵߚ

  

The residuals resulting from this regression are given by 

ܻ െ ܻ = ߚ + ଵܺ௦ߚ + ߝ െ ߚ െ
ଵ
௬

ଵܺ௬ ߚ

 = ߝ + ଵߚ ቆܺ௦ െ
௦
௬

ܺ௬ ቇ .
 

The sum of squares of residuals will average 

൫ ܻ െ ܻ൯
ଶ



 = ൭ߝଶ + ଵߚߝ2 ቆܺ௦ െ
௦
௬

ܺ௬ ቇ + ଵଶߚ ቆܺ௦ െ
௦
௬

ܺ௬ ቇ
ଶ

൱


 

 = ଶߪ݊ ଵଶቆܺ௦ߚ + െ
௦
௬

ܺ௬ ቇ
ଶ



 = ଶߪ݊ ଵଶߚ + ൭0ଶ ݊ܲ൫ܺ௬ = 0൯ +
௦ଶ

௬ଶ  ݊ܲ൫ܺ௬ = 1 & ܺ௦ = 0൯ +
൫௬ െ ௦൯

ଶ

௬ଶ  ݊ܲ(ܺ௦ = 1)൱

 = ଶߪ݊ + ଵଶߚ ൭0 ݊௦ +
௦ଶ

௬ଶ ݊൫௬ െ ௦൯ +
൫௬ െ ௦൯

ଶ

௬ଶ  ௦൱݊

 = ଶߪ݊ +  ଵߚ݊
ଶ ௬௦൫ െ ௦൯

௬
.

 

Hence the average R2 will be 
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 1 െ
σ ൫ ܻ െ ܻ൯

ଶ


σ ( ܻ െ തܻ)ଶ
 

=  1 െ
ଶߪ݊ + ௬௦൫ଵଶߚ݊ െ ௬/௦൯

ଶߪ݊ + ௦(1ଵଶߚ݊ െ (௦  

=  
௦൫1ଵଶߚ െ ௬/௬൯

௦൫1ଵଶߚ െ ௬/௬൯ + ଶߪ

 

The average standard error of the regression coefficient will be 

 ඨ
σ ൫ ܻ െ ܻ൯

ଶ
 / ݊

௬൫1 ݊ െ ௬൯
 

=  ඨ
ଶߪ + ௬௦൫ଵଶߚ െ ௬/௦൯

௬൫1 ݊ െ ௬൯
.

  

Leading to the average standardized test statistic of  

௬ݖ  =   
௦
௬

ଵߚ ඨ
ଶߪ + ௬௦൫ଵଶߚ െ ௬/௦൯

௬൫1 ݊ െ ௬൯
൘  

= ௦ඨଵߚ
1 െ ௬
௬

ඨ
݊

ଶߪ + ௬௦൫ଵଶߚ െ ௬/௦൯
.

 

For comparison, the residuals resulting from regression of Y on ܺ௦  are ߝ , which have sum of 

squares ݊ߪଶ, leading to an average R2 of 

ܴ௦ଶ =
௦(1௦ଶߚ െ (௦

௦(1௦ଶߚ െ (௦ + ଶߪ
, 

an average standard error of ඥߪଶ/݊, and an average standardized test statistic of 

௦ݖ = ଵඨߚ
௦(1݊ െ (௦

ଶߪ
. 

Therefore, 

௬ݖ = ௦ඨݖ 
௦/(1 െ  (௦

௬/(1 െ ௬)ඨ
ଶߪ

ଶߪ + ௬)௦ଵଶߚ െ ௬/(௦
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Since ೞ/(ଵିೞ) 
ೌ/(ଵିೌ)

< 1 and ೞ/(ଵିೞ) 
ೌ/(ଵିೌ)

< 1, we have shown that ݖ௬ <   .௦ݖ

 

Sensitivity Analysis Examining Baseline Parent Social Class as a Confounder 

In the current study, baseline parent social class was included as a covariate in the primary 

analysis. Parent social class, which captures job industry and rank, is related to other indicators of 

socioeconomic status, but likely has distinct effects on health across the life course (27).  In the 

current sample, parent social class was only modestly correlated (r �0.45) with other aspects of 

socioeconomic status, such as financial stress and neighborhood disadvantage.  Inclusion of parent 

social class thus allowed us to control for potential confounding effects of the social class into 

which children are born. 

As there is concern that adjusting for baseline parent social class as a covariate may not be 

appropriate given that it conceptually overlaps with some of the childhood adversity types in the 

current study (in particular, the measure of financial stress and neighborhood disadvantage), we 

report here on results from: 1)  our investigation into the definition of confounding from the causal 

inference literature, 2) our investigation in the theoretical and empirical literature to understand 

the nature of socioeconomic status and its effects on childhood adversity and DNAm , and 3) 

additional statistical analyses to compare results with and without adjusting for baseline parent 

social class. In the narrative below, we summarize what we learned through these processes.  We 

hope that these insights will be useful to make explicit our thinking and help guide future research 

efforts, including attempts to replicate these study findings.  

 

 



Dunn et al.  Supplement 

16 

The Definition of Confounding  

A confounder is traditionally defined as a variable that meets the following three criteria, 

as determined through either bivariate or multivariate tests of association: 1) it is associated with 

the exposure; 2) it is associated with the outcome given the exposure; 3) it does not lie on the 

causal pathway between the exposure and the outcome. 

In the past decade, researchers in the field of causal inference (see for example: (28-30)) 

have questioned whether relying purely on these three associational criteria is sufficient to evaluate 

confounding.  These concerns have been raised following instances when a true confounder has 

failed to satisfy the three associational criteria noted above, or when a variable meets these three 

associational criteria should not be adjusted for.  Causal inference experts have therefore proposed 

alternative strategies for determining the extent to which a third variable could be a potential 

confounder, which are intended to be used alongside the three associational criteria highlighted 

above. Some of these alternative strategies draw from things that cannot be directly tested through 

association analyses, such as greater use of causal diagrams and critical examination of theoretical 

evidence.  Other alternative definitions are based on evaluating bias before and after adjustment 

for a potential confounding variable (29).      

 Related to this last strategy, another property central to the concept of confounding is 

collapsibility.  In other words, when a potential confounder is removed from the analysis, does the 

association between the outcome and exposure remain the same?  Or, is the exposure-outcome 

relationship invariant to the inclusion of the potential confounder? Whenever collapsibility fails, 

meaning where the results are not the same before and after adjusting for the potential confounder, 

it suggests that the exposure-outcome relationship may be confounded.     
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 As summarized in the sections that follow, we considered the theoretical evidence 

regarding whether parent social class should be treated as a confounder and investigated whether 

the results were collapsible before and after the inclusion of baseline parent social class as a 

covariate.  

 

Theoretical Evidence   

Theoretical evidence is critical to justify the inclusion of covariates.  Here, we briefly 

review the literature on links between socioeconomic status (SES) and exposure to childhood 

adversity as well as the associations between SES and DNA methylation.  As shown below, the 

major take-home from this in-depth literature review is that baseline SES, including indicators of 

parent social class – as it is commonly measured in UK-based sample and was examined here (31, 

32), is a plausible suspect for confounding the relationship between exposure to other types of 

childhood adversity and DNAm and that the estimate of these types of adversity on DNAm may 

be biased without adjusting for baseline SES.  Furthermore, not all measures of SES perform the 

same in terms of their association with DNAm, suggesting that each different facet of the construct 

of SES needs to be considered on its own. 

 First, it is known from decades of literature that different dimensions of SES, including 

parent social class, are associated with childhood adversity. This literature has documented that 

children who experience adversity – including child maltreatment, parental psychopathology, 

parental substance use, or family disruption – are more likely to be poor, and to be raised by 

mothers who have less education, receive public assistance, and live in disadvantaged 

neighborhoods.  Moreover, some dimensions of child SES that are linked to these specific types 

of childhood adversity, such as parental education or parent social class (as defined by parent 
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employment), tend to be more fixed or stable across time.  Other dimensions tend to be less stable, 

such as indicators of financial stress or neighborhood disadvantage, which varies as a function of 

access to specific resources at different time-points in life or the occurrence of major life events 

leading to change in individual circumstances.  It has been argued (33-35) that this temporal 

variation requires the separate consideration of different domains of SES, as they each could have 

different links to health outcomes.  In the current study, controlling for baseline parental social 

class would help tease apart the effects of subjective levels of poverty or neighborhood 

disadvantage experienced by the participants throughout development from a less variable status 

of social disadvantage as captured by baseline social class. Therefore, there is theoretical ground 

for suspecting the existence of an SES-adversity exposure relationship. 

 Secondly, there has been growing evidence documenting associations between different 

indicators of SES and DNA methylation. Specifically, Swartz et al. (36) found that methylation 

marks associated with SES (defined as a composite score of education levels and income) may be 

an underlying mechanism for changes in depression-related brain functions. Several studies also 

found differential methylation patterns for individuals with lower geographical index of 

deprivation or education levels (37, 38). Furthermore, Stringhini et al. (39) showed that indicators 

of SES (parental occupational position) were associated with DNAm of genes involved in 

inflammation. These findings suggest that this relatively fixed aspect of SES (distinctive from the 

perceived economic or environmental hardship as measured by financial stress or neighborhood 

disadvantage in our sample) may induce DNAm changes, thereby supporting the potential SES-

outcome link.  In fact, prior longitudinal studies examining the effects of SES on DNAm also 

adjusted for baseline SES to control for risk factors prior to exposure or a more stable dimension 

of SES (40).   
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Results Before and After Adjusting for Baseline SES 

To evaluate the collapsibility principle, we examined the magnitude of change in our 

primary results (meaning of the 38 identified loci) before and after the inclusion of parent social 

class as a covariate. As presented in the main analyses (Table 1), methylation differences at 38 

CpG sites were found to be associated with exposure to childhood adversity (p < 1x10-7).  

After removing baseline parent social class as a covariate, 38 CpG sites were again 

identified (Table S7).  However, they were not identical sites to those 38 that were originally 

identified. Specifically, 31 CpGs were shared between the two sets of results and the same life 

course hypotheses were identified for these. Moreover, the Stage 2 beta estimates, corresponding 

standard errors, and R2 values were also effectively unchanged (relative difference, as defined by 

(ుି ు)
 ు  

, ZDV�XQGHU����IRU�DOO�VLWHV�IRU�DOO�WKUHH�SDUDPHWHUV��ȕ��6(��DQG�52). This comparison 

indicated that for these 31 sites, the results were largely consistent before and after including parent 

social class, thus the results were largely collapsible.   

Importantly, however, the results overall were not entirely collapsible.  There were seven 

loci dropped from the original results, and another seven new sites added after no longer adjusting 

for parent social class.  These 14 sites were dispersed across different adversity types.  For 

example, the seven sites that only appeared after adjusting for parent social class were capturing 

DNAm differences resulting from five different types of adversity (physical or sexual abuse, 

maternal psychopathology, one adult in the household, family instability, and financial 

stress/poverty).  The finding that 20% of the identified sites in each analysis did not overlap 

suggests that baseline parent social class may potentially confound the relationships between 

childhood adversity and DNAm differences at some loci.   
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 We then dug deeper into the pattern of findings related to the 14 loci that were not shared 

by the two sets of results (i.e., the seven hits that were dropped from the original analysis and the 

seven hits that were added in the revised analysis). The discrepancy in results appears to be 

attributed to the potential positive and negative confounding by baseline parent social class.  

Positive confounding refers to a scenario where the observed association is biased away from the 

null in the presence of an unadjusted confounder, whereas negative confounding refers to the 

opposite: the unadjusted association is biased towards the null. Whether the confounding is 

positive or negative depends on the directions of the confounder-exposure and confounder-

outcome associations. As SES may be associated with both hyper- and hypo- methylation, both 

types of confounding are possible in epigenetic studies. When the unadjusted estimate is biased 

away from the null (positive confounding), including the confounder may result in those CpG sites 

being dropped as significant.  When the unadjusted estimate is biased towards the null (negative 

confounding), the inclusion of the confounder may lead to new discoveries. Since adjusting for 

baseline parent social class led to both new additional hits being identified and unadjusted hits 

being removed, both types of confounding may be present in our analyses given that the directions 

of effects between parent social class and DNAm are CpG site-specific.  

 To better understand the specific pattern of these associations, we additionally examined 

the associational criteria presented earlier. Of the 14 sites that were not shared by the results before 

and after adjusting for parent social class, two of these CpG sites (thus 15% of the loci) were 

associated with baseline parent social class (cg15577126, family instability, F=3.21, p=0.007; 

cg01370449, sexual or physical abuse, F=4.28, p=0.0007). However, the effect estimates in 

epigenetic studies are known to be small and the models may be under powered to detect such 

associations, thus there could be even more significant loci linked to parent social class at baseline. 
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We are hoping to replicate the analyses in larger studies where we are more sufficiently powered 

to test whether the small, albeit important, effects of parent social class on DNAm exist or not.  

Testing the associations between the life course hypotheses encoding childhood adversity 

identified at these 14 loci and baseline parent social class, we found that 7 of the 12 (58%) unique 

life course hypotheses were associated with baseline parent social class (chi-squared test p<0.05). 

Taken together, these association tests may provide evidence for the presence of confounding 

induced by baseline SES.  However, as we discussed above, confounding cannot be determined 

purely based on associational criteria and the results should be interpreted with this notion in mind.  

 Based on a careful review of the theoretical evidence for SES being a confounder as well 

as an investigation of differences in results before and after including SES, we concluded that the 

more conservative approach would be to adjust for baseline parent social class as a covariate.  This 

decision is supported based on prior research literature and our finding that the results shifted with 

the exclusion of this variable. However, results at most of the identified hits (more than 80% among 

both the Bonferroni corrected 38 loci and 380 FDR corrected loci) remained invariant, suggesting 

that the inclusion of SES did not cause a substantial change in the findings. While some loci are 

sensitive to potential bias induced by SES and should not be neglected, the patterns of results are 

largely stable. The fact that the same number of top hits were identified in these two sets of 

analyses is reassuring and shows that we did not intentionally overfit the model and include parent 

social class purely based on its impact on the statistical significance of findings.  
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Exploring the Biological Significance of the Findings 

Correlation Between Blood and Brain Tissue 

 To examine the relevance of methylation at our top sites to psychopathology, we examined 

the correlation between methylation in peripheral blood tissue and that of the brain using a publicly 

available database of methylation in 122 adults (42). We retrieved Pearson r correlation values 

between methylation in blood and four brain regions: prefrontal cortex (PFC), entorhinal cortex 

(EC), superior temporal gyrus (STG), and cerebellum (CER). 

 

Enrichment of Regulatory Elements 

To assess potential functional relevance of methylation changes at CpG sites associated 

with exposure to adversity, we examined the enrichment of regulatory elements annotated to FDR-

significant loci. We obtained annotations of gene promoters, enhancers, and CpG Islands (CGIs) 

for all CpG sites from the IlluminaHumanMethylation450kanno.ilmn12.hg19 package in 

R/Bioconductor. We compared the proportion of annotations between the FDR-significant sites 

and all autosomal sites tested with chi-squared goodness-of-fit tests. We also tested for enrichment 

of DNase I hypersensitivity sites (DHS) and histone marks (H3K27ac, H3K4me3, H3K4me1, 

H3K9ac, and H3K36me3) for FDR-significant sites using data from all tissues and cell types in 

the Roadmap Epigenomics Project (43) and ENCODE (44) using eFORGE 1.2 (45). eFORGE 

performs an overlap analysis by selecting 1000 sets of CpGs matched for gene relationship and 

CpG island relationship annotation and calculating a confidence interval of expected enrichment. 

The resulting p-values for each tissue and cell type were then corrected with Benjamini-Yekutieli 

multiple testing correction (45). 
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Biological Processes Potentially Affected by Adversity 

 To identify common biological processes shared by these genes, we performed a functional 

clustering analysis in DAVID 6.8 (46), which identifies Gene Ontology (GO) biological process 

terms that are enriched for genes annotated to the FDR-significant sites.  CpG sites were annotated 

to the nearest gene (located in the gene body or within 300 kb of a transcription start site, TSS) 

using the FDb.InfiniumMethylation.hg19 package in R/Bioconductor (46).  DAVID calculates an 

enrichment score for each functional cluster, which is the negative log of the geometric mean of 

the p-values of all GO terms within the cluster. The p-value for each GO term is derived from a 

modified Fisher’s exact test, which tests whether the GO term is overrepresented among genes in 

the gene set as compared to a background of all autosomal genes tagged by the Illumina Human 

Methylation 450K BeadChip microarray. 

To assess the selective constraint of these genes, we downloaded the gene constraint 

metrics from the Exome Aggregation Consortium (ExAC) and calculated the difference in the 

probability of intolerance to Loss-of-Function variation (pLI) in genes annotated to the FDR-

significant loci as compared to genes annotated to the rest of the autosomal loci. The significance 

of this difference was tested with a permutation test. The FDR-significant gene label was permuted 

among all genes 10000 times and the difference in pLI was calculated; the number of permutations 

in which the absolute value of the difference in means was greater than the absolute value of the 

observed difference in means was recorded as the empirical p-value. 
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Supplementary Tables and Figures 
 
 

Table S1. Distribution of covariates in the total sample (N=971) and among those exposed to any adversity (N=650) 

  Total Sample Exposure to any adversity 

 % N % N chi-squared p-value 

Sex 0.562 0.453 

Males 49.85 484 48.92 318   
Females 50.15 487 51.08 332   

Race 4.811 0.028 

White 2.78 26 3.7 23   
Non-White 97.22 909 96.3 599   

Age of Mother at Child's Birth 4.52 0.104 

Ages 15-19 0.93 9 1.38 9   
Ages 20-35 89.54 865 88.92 578   
Age 36+ 9.52 92 9.69 63   

Parental Social Class 13.327 0.021 

Foreman 17.92 174 17.23 112   
Manager 38.83 377 37.38 243   
Supervisor 20.91 203 20 130   
Lending Hand 5.56 54 5.54 36   
Self-Employed 1.85 18 2.15 14   
None of these 14.93 145 17.69 115   

Number of Previous Pregnancies 4.703 0.195 

0 46.8 439 46.26 291   
1 36.67 344 35.61 224   
2 12.69 119 13.51 85   
3+ 3.84 36 4.61 29   

Birth Weight (g) 0.697 0.874 

<3000 13.33 127 13.84 89   
3000 - 3499 36.31 346 35.61 229   
3500 - 3499 35.15 335 35.15 226   
>= 4000 15.22 145 15.4 99   

Sustained Smoking During Pregnancy 10.522 0.001 

Yes 89.23 820 86.81 533   
No 10.77 99 13.19 81     

Note. The chi-squared statistics and p-YDOXHV�LQ�EROG�LQGLFDWH�WKDW�WKH�WHVWV�UHDFKHG�VWDWLVWLFDO�VLJQLILFDQFH�DW�Į� ������� 
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Table S2. Tetrachoric correlations am
ong tim

e-points w
ithin adversities 

C
aregiver physical or em

otional abuse (N
=787) 

  
M

aternal psychopathology (N
=760) 

A
ge 

8 m
o 

1.75 
2.75 

4 
5 

6 
 

A
ge 

8 m
o 

1.75 
2.75 

5 
6 

 
8 m

o 
1 

--- 
--- 

--- 
--- 

--- 
 

8 m
o 

1 
--- 

--- 
--- 

--- 
 

1.75 
0.82 

1 
--- 

--- 
--- 

--- 
 

1.75 
0.67 

1 
--- 

--- 
--- 

 
2.75 

0.69 
0.77 

1 
--- 

--- 
--- 

 
2.75 

0.56 
0.67 

1 
--- 

--- 
 

4 
0.62 

0.7 
0.78 

1 
--- 

--- 
 

5 
0.61 

0.6 
0.65 

1 
--- 

 
5 

0.58 
0.58 

0.69 
0.66 

1 
--- 

 
6 

0.44 
0.53 

0.57 
0.71 

1 
 

6 
0.45 

0.46 
0.5 

0.56 
0.67 

1 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Sexual or physical abuse (by anyone) (N
=769) 

  
Fam

ily instability (N
=769) 

A
ge 

1.5 
2.5 

3.5 
4.75 

5.75 
6.75 

 
A

ge 
1.5 

2.5 
3.5 

4.75 
5.75 

6.75 
1.5 

1 
--- 

--- 
--- 

--- 
--- 

 
1.5 

1 
--- 

--- 
--- 

--- 
--- 

2.5 
0.44 

1 
--- 

--- 
--- 

--- 
 

2.5 
0.74 

1 
--- 

--- 
--- 

--- 
3.5 

0.02 
0.32 

1 
--- 

--- 
--- 

 
3.5 

0.48 
0.6 

1 
--- 

--- 
--- 

4.75 
0.33 

0.44 
0.69 

1 
--- 

--- 
 

4.75 
0.27 

0.41 
0.28 

1 
--- 

--- 
5.75 

0.4 
0.51 

0.61 
0.49 

1 
--- 

 
5.75 

0.24 
0.21 

0.34 
0.52 

1 
--- 

6.75 
0.28 

0.42 
0.25 

0.4 
0.56 

1 
 

6.75 
0.28 

0.37 
0.11 

0.61 
0.58 

1 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

O
ne adult in the household (N

=726) 
  

Financial stress (N
=846) 

A
ge 

8 m
o 

1.75 
2.75 

4 
7 

 
 

A
ge 

8 m
o 

1.75 
2.75 

5 
7 

 
8 m

o 
1 

--- 
--- 

--- 
--- 

 
 

8 m
o 

1 
--- 

--- 
--- 

--- 
 

1.75 
0.9 

1 
--- 

--- 
--- 

 
 

1.75 
0.71 

1 
--- 

--- 
--- 

 
2.75 

0.78 
0.93 

1 
--- 

--- 
 

 
2.75 

0.59 
0.67 

1 
--- 

--- 
 

4 
0.64 

0.82 
0.91 

1 
--- 

 
 

5 
0.53 

0.54 
0.59 

1 
--- 

 
7 

0.54 
0.75 

0.81 
0.79 

1 
 

 
7 

0.36 
0.4 

0.38 
0.56 

1 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
N

eighborhood disadvantage (N
=771) 
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ge 

1.75 
2.75 

5 
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1.75 
1 

--- 
--- 

--- 
 

 
 

 
 

 
 

 
 

 
2.75 

0.74 
1 

--- 
--- 

 
 

 
 

 
 

 
 

 
 

5 
0.71 

0.8 
1 

--- 
 

 
 

 
 

 
 

 
 

 
7 

0.67 
0.75 

0.89 
1 

 
 

 
 

 
 

 
 

 
 

C
ell entries are correlation values indicating the strength of each pairw

ise association betw
een exposure at tw

o tim
e points, w

ith 0=unexposed and 1=exposed 
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See Supplem
ental Table S3 in Supplem

ent 2.  
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 Table S4. R
esults of sensitivity analysis exam

ining differential m
ethylation at birth for all B

onferroni-significant C
pG

 sites 

C
pG

 site 
A

dversity 
First hypothesis chosen by 

L
A

R
S procedure 

B
irth D

N
A

m
 in 

unexposed group 
(beta) 

B
irth D

N
A

m
 in 

exposed group 
(beta) 

B
eta 

SE
 

P 
D

irections of 
effect (birth, 

age 7) 

cg10713431 
C

aregiver physical or 
em

otional abuse 
(N

=643) 

m
iddle childhood (age 6) 

0.117 
0.121 

0.00497 
0.0031 

0.1116 
++ 

cg12023170 
m

iddle childhood (age 6) 
0.058 

0.057 
-0.00132 

0.0032 
0.6787 

-+ 
cg19825600 

m
iddle childhood (age 6) 

0.283 
0.246 

-0.03488 
0.0214 

0.1037 
-- 

cg01370449 
Sexual or physical 
abuse (by anyone) 

(N
=630) 

very early childhood (age 2.5) 
0.2 

0.225 
0.01823 

0.0217 
0.4006 

++ 
cg06430102 

very early childhood (age 2.5) 
0.902 

0.902 
0.00043 

0.0226 
0.9848 

+- 
cg19170021 

early childhood (age 4.75) 
0.767 

0.759 
0.00015 

0.0277 
0.9958 

++ 
cg05072819 

early childhood (age 5.75) 
0.041 

0.051 
0.01205 

0.004 
0.0029 

++ 
cg05936516 

m
iddle childhood (age 6.75) 

0.105 
0.1 

-0.00009 
0.008 

0.9911 
0+ 

cg04583813 
M

aternal 
psychopathology 

(N
=618) 

very early childhood (age 8 m
o.) 

0.866 
0.871 

0.00359 
0.0101 

0.7228 
+- 

cg08171937 
very early childhood (age 2.75) 

0.016 
0.017 

0.00051 
4.00E-04 

0.2503 
++ 

cg10666628 
very early childhood (age 2.75) 

0.019 
0.019 

-0.00012 
4.00E-04 

0.7789 
-+ 

cg17806989 
early childhood (age 5) 

0.971 
0.97 

-0.00157 
0.0049 

0.7487 
-- 

cg08337366 
O

ne adult in the 
household (N

=638) 
very early childhood (age 8 m

o.) 
0.926 

0.914 
-0.01153 

0.013 
0.3744 

-- 
cg10192047 

very early childhood (age 8 m
o.) 

0.016 
0.015 

-0.00111 
0.0017 

0.5249 
-+ 

cg26990406 
very early childhood (age 8 m

o.) 
0.827 

0.835 
0.00992 

0.0449 
0.8251 

+- 
cg24468070 

very early childhood (age 1.75) 
0.026 

0.024 
-0.00154 

0.0054 
0.7734 

-+ 
cg03397307 

very early childhood (age 2.75) 
0.026 

0.035 
0.01011 

0.0025 
1.00E

-04 
++ 

cg11631610 
Financial stress 

(N
=694) 

very early childhood (age 8 m
o.) 

0.94 
0.943 

0.00514 
0.0105 

0.623 
+- 

cg06783003 
very early childhood (age 1.75) 

0.865 
0.865 

0.00321 
0.0102 

0.7528 
++ 

cg01050704 
early childhood (age 5) 

0.018 
0.019 

0.0011 
6.00E-04 

0.0496 
++ 

cg02006977 
early childhood (age 5) 

0.015 
0.015 

-0.00034 
6.00E-04 

0.553 
-+ 

cg21299458 
early childhood (age 5) 

0.097 
0.113 

0.01361 
0.0077 

0.0795 
++ 

cg19219503 
m

iddle childhood (age 7) 
0.878 

0.879 
0.00496 

0.0154 
0.7482 

+- 
cg11714846 

accum
ulation 

0.896 
0.896 

-0.00013 
0.0022 

0.9515 
-- 

cg21924472 
recency 

0.73 
0.746 

0.00062 
9.00E-04 

0.4711 
++ 

cg24996440 
recency 

0.575 
0.597 

0.00343 
0.0014 

0.0129 
++ 
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C
pG

 site 
A

dversity 
First hypothesis chosen by 

L
A

R
S procedure 

B
irth D

N
A

m
 in 

unexposed group 
(beta) 

B
irth D

N
A

m
 in 

exposed group 
(beta) 

B
eta 

SE
 

P 
D

irections of 
effect (birth, 

age 7) 

cg00928478 
N

eighborhood 
disadvantage (N

=629) 
very early childhood (age 1.75) 

0.021 
0.02 

-0.00085 
6.00E-04 

0.1744 
-- 

cg01954337 
very early childhood (age 1.75) 

0.053 
0.055 

0.00322 
0.0023 

0.1639 
++ 

cg04996689 
very early childhood (age 1.75) 

0.032 
0.032 

0.00072 
0.0018 

0.6794 
++ 

cg12069925 
very early childhood (age 1.75) 

0.042 
0.042 

-0.00014 
0.0016 

0.9303 
-+ 

cg14522055 
very early childhood (age 1.75) 

0.031 
0.031 

0.00047 
0.0012 

0.7035 
++ 

cg19157140 
very early childhood (age 1.75) 

0.014 
0.014 

0.00064 
5.00E-04 

0.2422 
++ 

cg21740964 
very early childhood (age 1.75) 

0.15 
0.152 

0.00508 
0.0042 

0.2262 
++ 

cg24826892 
very early childhood (age 1.75) 

0.016 
0.016 

0.00018 
7.00E-04 

0.7923 
++ 

cg08546016 
early childhood (age 5) 

0.048 
0.047 

-0.00254 
0.003 

0.4041 
-+ 

cg12412390 
m

iddle childhood (age 7) 
0.029 

0.03 
0.00069 

0.0017 
0.6822 

++ 
cg18311384 

Fam
ily instability 
(N

=630) 
very early childhood (age 2.5) 

0.019 
0.019 

-0.00067 
9.00E-04 

0.4595 
-+ 

cg27637303 
very early childhood (age 2.5) 

0.195 
0.209 

0.0114 
0.0182 

0.5308 
++ 

To assess the degree of differential m
ethylation present at birth, w

e perform
ed regression analysis on m

ethylation in um
bilical cord blood at the top C

pG
 sites. The hypothesis associated 

w
ith D

N
A

m
 at age 7 w

as significantly associated w
ith D

N
A

m
 at birth for one C

pG
 site (bold value, p<0.05/38 = 0.00132). The direction of the effect of exposure to adversity on D

N
A

m
 

at birth w
as the sam

e as that on D
N

A
m

 at age 7 in the m
ajority of C

pG
 sites (24 of 37 sites in w

hich the first hypothesis chosen w
as not significantly associated w

ith m
ethylation at 

birth), suggesting that there m
ay be insufficient pow

er to detect effects of later exposure to adversity on D
N

A
m

 at birth.  B
irth D

N
A

m
 = unadjusted D

N
A

 m
ethylation (beta values) in 

um
bilical cord blood averaged w

ithin group; B
eta, SE, P = param

eter estim
ate, standard error, and p-value of regression coefficient of first hypothesis chosen; D

irections of effect = 
sign of regression coefficient for the effect of the first hypothesis chosen on m

ethylation in blood from
 the um

bilical cord and from
 age 7. "0" indicates that the m

agnitude of effect 
(absolute value of the beta coefficient) w

as below
 0.0001. 
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 See Supplem
ental Table S4-extension in Supplem

ent 2.  
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Table S5. R
esults of sensitivity analysis exam

ining differential m
ethylation at age 7 after controlling for genotypes, for all B

onferroni-significant C
pG

 sites linked to m
Q

TLs 
C

pG
 

A
dversity 

First hypothesis chosen by L
A

R
S procedure 

N
um

ber of 
m

Q
T

L
 SN

Ps  
N

' 
B

eta 
SE

 
P 

D
irections of effect (age 7, age 
7 controlling for genotype) 

cg10713431 
C

aregiver physical or 
em

otional abuse (N
=719) 

m
iddle childhood (age 6) 

. 
. 

. 
. 

. 
. 

cg12023170 
m

iddle childhood (age 6) 
95 

559 
0.0107 

0.0025 
1.89E-05 

++ 
cg19825600 

m
iddle childhood (age 6) 

. 
. 

. 
. 

. 
. 

cg01370449 
Sexual or physical abuse (by 

anyone) (N
=703) 

very early childhood (age 2.5) 
101 

510 
0.0775 

0.0187 
3.95E-05 

++ 
cg06430102 

very early childhood (age 2.5) 
. 

. 
. 

. 
. 

. 
cg19170021 

early childhood (age 4.75) 
8 

632 
0.0833 

0.0216 
1.30E-04 

++ 
cg05072819 

early childhood (age 5.75) 
218 

423 
0.009 

0.0036 
1.30E-02 

++ 
cg05936516 

m
iddle childhood (age 6.75) 

. 
. 

. 
. 

. 
. 

cg04583813 
M

aternal psychopathology 
(N

=691) 
very early childhood (age 8 m

o.) 
6 

632 
-0.025 

0.0048 
2.76E-07 

-- 
cg08171937 

very early childhood (age 2.75) 
. 

. 
. 

. 
. 

. 
cg10666628 

very early childhood (age 2.75) 
. 

. 
. 

. 
. 

. 
cg17806989 

early childhood (age 5) 
. 

. 
. 

. 
. 

. 
cg08337366 

O
ne adult in the household 

(N
=710) 

very early childhood (age 8 m
o.) 

1 
644 

-0.0337 
0.0065 

2.57E-07 
-- 

cg10192047 
very early childhood (age 8 m

o.) 
. 

. 
. 

. 
. 

. 
cg26990406 

very early childhood (age 8 m
o.) 

. 
. 

. 
. 

. 
 

cg24468070 
very early childhood (age 1.75) 

40 
600 

0.0231 
0.0044 

2.64E-07 
++ 

cg03397307 
very early childhood (age 2.75) 

1 
625 

0.0048 
0.001 

3.09E-06 
++ 

cg18311384 
Fam

ily instability (N
=703) 

very early childhood (age 2.5) 
. 

. 
. 

. 
. 

. 
cg27637303 

very early childhood (age 2.5) 
27 

612 
0.0669 

0.0174 
1.36E-04 

++ 
cg11631610 

Financial stress (N
=774) 

very early childhood (age 8 m
o.) 

1 
580 

-0.0174 
0.0068 

1.05E-02 
-- 

cg06783003 
very early childhood (age 1.75) 

. 
. 

. 
. 

. 
. 

cg01050704 
early childhood (age 5) 

1 
712 

0.0023 
5.00E-04 

5.52E-06 
++ 

cg02006977 
early childhood (age 5) 

1 
617 

0.0019 
5.00E-04 

2.17E-04 
++ 

cg21299458 
early childhood (age 5) 

2 
522 

0.0461 
0.008 

1.49E-08 
++ 

cg19219503 
m

iddle childhood (age 7) 
. 

. 
. 

. 
. 

. 
cg11714846 

accum
ulation 

. 
. 

. 
. 

. 
. 

cg21924472 
recency 

. 
. 

. 
. 

. 
. 

cg24996440 
recency 

. 
. 

. 
. 

. 
. 

cg00928478 
N

eighborhood disadvantage 
(N

=702) 
very early childhood (age 1.75) 

1 
608 

-0.0021 
5.00E-04 

1.04E-05 
-- 

cg01954337 
very early childhood (age 1.75) 

2 
612 

0.0094 
0.0019 

5.06E-07 
++ 

cg04996689 
very early childhood (age 1.75) 

. 
. 

. 
. 

. 
. 

cg12069925 
very early childhood (age 1.75) 

. 
. 

. 
. 

. 
. 

cg14522055 
very early childhood (age 1.75) 

. 
. 

. 
. 

. 
. 

cg19157140 
very early childhood (age 1.75) 

. 
. 

. 
. 

. 
. 

cg21740964 
very early childhood (age 1.75) 

5 
614 

0.014 
0.003 

5.02E-06 
++ 

cg24826892 
very early childhood (age 1.75) 

. 
. 

. 
. 

. 
. 

cg08546016 
early childhood (age 5) 

6 
627 

0.0061 
0.0013 

2.65E-06 
++ 

cg12412390 
m

iddle childhood (age 7) 
. 

. 
. 

. 
. 

. 
To assess the degree of differential m

ethylation attributable to genetic variation, w
e conducted a sensitivity analysis testing the effect of the hypothesis chosen by the first stage of the LA

R
S on D

N
A

m
 after controlling for 

know
n m

Q
TLs. A

fter controlling for genotypes at m
Q

TL SN
Ps, the direction of the effect of exposure to adversity on D

N
A

m
 did not change. N

um
ber of m

Q
TL SN

Ps = num
ber of SN

Ps associated w
ith m

ethylation at 
C

pG
 site identified by G

aunt et al. 2015; N
' = num

ber of subjects included in analysis (i.e. w
ith non-m

issing genotype data); B
eta, SE, P = param

eter estim
ate, standard error, and p-value of regression coefficient of first 

hypothesis chosen, after controlling for genotype; D
irections of effect = sign of regression coefficient for the effect of the first hypothesis chosen on m

ethylation in blood at age 7 (unadjusted) and at age 7 controlling for 
genotype (adjusted). 
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Table S6. Correlation of methylation between blood and four brain regions (data from Hannon et al. 2015) 

CpG site Adversity First hypothesis chosen by LARS 
procedure 

Correlation with brain methylation, by region 
        PFC          EC         STG         CER 

cg10713431 Caregiver physical or 
emotional abuse 

(N=719) 

middle childhood (age 6) 0.367 0.397 0.319 0.395 
cg12023170 middle childhood (age 6) 0.389 0.385 0.508 0.598 
cg19825600 middle childhood (age 6) 0.250 0.149 0.316 0.162 
cg01370449 Sexual or physical 

abuse (by anyone) 
(N=703) 

very early childhood (age 2.5) 0.402 0.409 0.413 0.090 
cg06430102 very early childhood (age 2.5) -0.131 -0.047 -0.025 -0.132 
cg19170021 early childhood (age 4.75) 0.043 -0.188 -0.114 -0.038 
cg05072819 early childhood (age 5.75) 0.740 0.744 0.833 0.754 
cg05936516 middle childhood (age 6.75) -0.014 0.049 0.003 -0.129 
cg04583813 Maternal 

psychopathology 
(N=691) 

very early childhood (age 8 mo.) 0.008 -0.153 0.044 0.033 
cg08171937 very early childhood (age 2.75) -0.169 0.204 -0.074 0.099 
cg10666628 very early childhood (age 2.75) -0.005 -0.015 0.103 -0.026 
cg17806989 early childhood (age 5) 0.011 0.278 0.305 -0.017 
cg08337366 One adult in the 

household (N=710) 
very early childhood (age 8 mo.) -0.068 0.120 0.180 0.028 

cg10192047 very early childhood (age 8 mo.) 0.116 -0.079 -0.141 -0.020 
cg26990406 very early childhood (age 8 mo.) 0.146 0.015 0.387 -0.114 
cg24468070 very early childhood (age 1.75) 0.120 0.083 0.116 0.001 
cg03397307 very early childhood (age 2.75) -0.182 0.046 -0.122 0.048 
cg18311384 Family instability 

(N=703) 
very early childhood (age 2.5) -0.054 0.086 -0.077 -0.104 

cg27637303 very early childhood (age 2.5) 0.197 -0.045 0.033 0.174 
cg11631610 Financial stress 

(N=774) 
very early childhood (age 8 mo.) -0.034 -0.037 0.071 -0.001 

cg06783003 very early childhood (age 1.75) -0.022 -0.196 0.010 -0.055 
cg01050704 early childhood (age 5) -0.023 -0.012 0.039 -0.081 
cg02006977 early childhood (age 5) 0.044 0.179 -0.221 -0.019 
cg21299458 early childhood (age 5) 0.293 0.251 0.252 -0.005 
cg19219503 middle childhood (age 7) -0.007 0.180 0.230 0.098 
cg11714846 accumulation -0.011 -0.272 -0.060 -0.024 
cg21924472 recency 0.285 0.431 0.378 0.192 
cg24996440 recency 0.118 0.174 0.148 -0.164 
cg00928478 Neighborhood 

disadvantage (N=702) 
very early childhood (age 1.75) -0.084 0.051 0.139 -0.067 

cg01954337 very early childhood (age 1.75) 0.008 -0.067 0.077 0.023 
cg04996689 very early childhood (age 1.75) 0.057 0.042 -0.175 -0.172 
cg12069925 very early childhood (age 1.75) 0.277 0.108 -0.061 0.256 
cg14522055 very early childhood (age 1.75) -0.107 0.031 0.022 -0.025 
cg19157140 very early childhood (age 1.75) 0.088 0.153 -0.032 0.105 
cg21740964 very early childhood (age 1.75) 0.410 0.455 0.449 0.445 
cg24826892 very early childhood (age 1.75) 0.086 0.038 0.131 -0.074 
cg08546016 early childhood (age 5) -0.078 0.069 -0.249 -0.096 
cg12412390 middle childhood (age 7) 0.158 0.295 -0.072 0.043 
To examine the relevance of methylation at our top sites to psychopathology, we examined the correlation in methylation in peripheral blood with that of 
four brain regions: prefrontal cortex (PFC), entorhinal cortex (EC), superior temporal gyrus (STG), and cerebellum (CER). 
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Table S7. Sensitivity analysis results of the Structured Life C
ourse M

odeling A
pproach (SLC

M
A

) in A
R

IES, w
ith annotation to the closest gene, for the B

onferroni-significant C
pG

 sites (p<1x10-7), w
ithout adjusting for baseline social class   

C
pG

 site 
A

dversity 
First hypothesis chosen by L

A
R

S 
procedure 

D
N

A
m

 
in 

unexpo
sed   

D
N

A
m

 in 
exposed 
group 
(beta) 

Increases 
in R

2 
P 

B
eta 

(effect 
estim

ate) 

SE
 

L
ow

e
r 95%

 
C

I 

U
pper 

95%
 

C
I 

C
hr 

C
oordinate 

(bp) 
N

earest 
gene 

D
istance 

to nearest 
gene (bp) 

cg10713431 
C

aregiver physical 
or em

otional abuse 
(N

=719) 

m
iddle childhood (age 6) 

0.132 
0.139 

0.024 
5.91E-08 

0.008 
0.0019 

0.004 
0.012 

20 
43933204 

M
A

TN
4 

0 
cg12023170

a 
m

iddle childhood (age 6) 
0.074 

0.086 
0.038 

2.86E-10* 
0.013 

0.0023 
0.008 

0.017 
1 

23751761 
TC

EA
3 

499 
cg19825600

a,b 
m

iddle childhood (age 6) 
0.458 

0.384 
0.028 

1.77E-08 
-0.073 

0.0158 
-0.104 

-0.042 
2 

3704501 
A

LLC
 

1283 
cg02106682

 ݻ
Sexual or physical 
abuse (by anyone) 

(N
=703) 

very early childhood (age 2.5) 
0.216 

0.252 
0.030 

6.84E-08 
0.033 

0.0066 
0.020 

0.046 
7 

27184461 
H

O
X

A
- 

0 
cg06430102 

very early childhood (age 2.5) 
0.926 

0.862 
0.039 

4.13E-10* 
-0.060 

0.0103 
-0.080 

-0.039 
19 

1151960 
SB

N
O

2 
0 

cg16691821
a  ݻ

early childhood (age 3.5) 
0.089 

0.124 
0.028 

9.12E-08 
0.035 

0.0074 
0.020 

0.049 
1 

2375627 
PEX

10 
31616 

cg19170021 
early childhood (age 4.75) 

0.734 
0.827 

0.028 
6.28E-08 

0.093 
0.0209 

0.052 
0.134 

17 
79077169 

B
A

IA
P2 

0 
cg05072819

a 
early childhood (age 5.75) 

0.040 
0.053 

0.031 
2.54E-08 

0.014 
0.0027 

0.009 
0.019 

3 
20081367 

K
A

T2B
 

155 
cg05936516 

m
iddle childhood (age 6.75) 

0.128 
0.153 

0.031 
7.18E-08 

0.025 
0.0047 

0.016 
0.035 

5 
114507066 

TR
IM

36 
0 

cg04583813 
M

aternal 
psychopathology 

(N
=691) 

very early childhood (age 8 m
o.) 

0.900 
0.878 

0.032 
3.57E-08 

-0.023 
0.0045 

-0.032 
-0.014 

10 
560323 

D
IP2C 

0 
cg08216050

a,b
 ݻ

very early childhood (age 8 m
o.) 

0.964 
0.968 

0.026 
7.89E-08 

0.004 
0.0008 

0.002 
0.005 

16 
704013 

W
D

R
90 

0 
cg08171937 

very early childhood (age 2.75) 
0.016 

0.017 
0.032 

6.79E-10* 
0.001 

0.0003 
0.001 

0.002 
12 

49454761 
R

H
EB

L1 
3705 

cg17806989 
early childhood (age 5) 

0.981 
0.975 

0.032 
1.55E-08 

-0.006 
0.0012 

-0.008 
-0.004 

13 
25338287 

R
N

F17 
12 

cg08337366
a 

O
ne adult in the 
household  
(N

=710) 

very early childhood (age 8 m
o.) 

0.934 
0.906 

0.031 
2.45E-08 

-0.032 
0.0065 

-0.045 
-0.020 

19 
6371622 

A
LK

B
H

7 
820 

cg10192047 
very early childhood (age 8 m

o.) 
0.016 

0.019 
0.029 

1.12E-08* 
0.003 

0.0007 
0.002 

0.005 
19 

18722754 
TM

EM
59

 
926 

cg24468070 
very early childhood (age 1.75) 

0.038 
0.058 

0.031 
7.94E-09* 

0.022 
0.0044 

0.013 
0.031 

19 
54976501 

C
D

C
42E
 

0 
cg03397307 

very early childhood (age 2.75) 
0.025 

0.030 
0.030 

8.42E-09* 
0.005 

0.0010 
0.003 

0.007 
12 

3862423 
C

R
A

C
R

2
A

 
56 

cg05502103
a,b

 ݻ
Fam

ily instability 
(N

=703) 
early childhood (age 3.5) 

0.750 
0.626 

0.029 
6.36E-08 

-0.133 
0.0283 

-0.189 
-0.078 

7 
588936 

PR
K

A
R

1
 

0 
cg15577126

 ݻ
early childhood (age 4.75) 

0.227 
0.291 

0.029 
7.68E-08 

0.061 
0.0124 

0.037 
0.086 

2 
218932178 

R
U

FY
4 

0 
cg11631610 

Financial stress 
(N

=774) 
very early childhood (age 8 m

o.) 
0.949 

0.923 
0.028 

5.75E-09* 
-0.027 

0.0056 
-0.038 

-0.016 
19 

11322739 
D

O
C

K
6 

0 
cg01050704

a 
early childhood (age 5) 

0.017 
0.019 

0.027 
1.92E-08 

0.002 
0.0005 

0.001 
0.003 

19 
59084995 

M
ZF1- 

0 
cg21299458 

early childhood (age 5) 
0.110 

0.147 
0.035 

1.55E-11* 
0.038 

0.0070 
0.024 

0.052 
22 

20779896 
SC

A
R

F2 
0 

cg19219503 
m

iddle childhood (age 7) 
0.922 

0.889 
0.029 

1.05E-09* 
-0.034 

0.0070 
-0.048 

-0.020 
10 

37414802 
A

N
K

R
D

3
 

0 
cg11714846 

accum
ulation 

0.923 
0.915 

0.023 
4.44E-08 

-0.005 
0.0011 

-0.007 
-0.003 

1 
230419534 

G
A

LN
T2 

1658 
cg21924472 

recency 
0.756 

0.770 
0.028 

9.36E-09* 
0.003 

0.0006 
0.002 

0.004 
4 

139600734 
LIN

C
004
 

255235 
cg24996440 

recency 
0.566 

0.585 
0.027 

2.01E-08 
0.005 

0.0009 
0.003 

0.006 
2 

3583570 
R

N
A

SEH
 

9119 
cg00928478 

N
eighborhood 

disadvantage 
(N

=702) 

very early childhood (age 1.75) 
0.020 

0.018 
0.028 

1.22E-08* 
-0.002 

0.0005 
-0.003 

-0.001 
10 

99078824 
FR

A
T1 

196 
cg01954337 

very early childhood (age 1.75) 
0.050 

0.059 
0.029 

3.39E-08 
0.008 

0.0018 
0.005 

0.012 
11 

3819010 
N

U
P98 

0 
cg04996689 

very early childhood (age 1.75) 
0.029 

0.035 
0.027 

3.61E-08 
0.006 

0.0011 
0.003 

0.008 
5 

52285560 
ITG

A
2 

0 
cg12069925 

very early childhood (age 1.75) 
0.042 

0.048 
0.030 

2.34E-09* 
0.007 

0.0014 
0.004 

0.009 
17 

11900858 
ZN

F18 
72 

cg14522055 
very early childhood (age 1.75) 

0.030 
0.035 

0.028 
4.63E-08 

0.005 
0.0011 

0.003 
0.007 

15 
64338757 

D
A

PK
2 

235 
cg19157140 

very early childhood (age 1.75) 
0.014 

0.016 
0.037 

3.48E-11* 
0.002 

0.0004 
0.001 

0.003 
7 

766323 
PR

K
A

R
1

 
0 

cg21740964 
very early childhood (age 1.75) 

0.160 
0.173 

0.025 
6.32E-08 

0.014 
0.0028 

0.008 
0.019 

6 
3849331 

FA
M

50B 
299 

cg22396033
 ݻ

very early childhood (age 1.75) 
0.022 

0.025 
0.027 

9.89E-08 
0.003 

0.0006 
0.002 

0.004 
1 

156862233 
PEA

R
1 

1288 
cg24826892

a 
very early childhood (age 1.75) 

0.016 
0.018 

0.030 
7.46E-09* 

0.003 
0.0006 

0.002 
0.004 

11 
71159390 

D
H

C
R

7 
0 

cg08546016 
early childhood (age 5) 

0.050 
0.056 

0.028 
1.12E-08* 

0.006 
0.0012 

0.004 
0.008 

17 
72776238 

TM
EM

10
 

0 
cg04007726

a  ݻ
m

iddle childhood (age 7) 
0.883 

0.858 
0.029 

5.35E-08 
-0.025 

0.0053 
-0.036 

-0.015 
10 

80981129 
ZM

IZ1 
0 

cg12412390 
m

iddle childhood (age 7) 
0.038 

0.046 
0.030 

6.11E-08 
0.008 

0.0016 
0.005 

0.011 
4 

96469286 
U

N
C

5C
 

0 
D

N
A

m
 = unadjusted D

N
A

 m
ethylation (beta values) averaged w

ithin group; Increase in R
2 = increase in R

2 explained by first hypothesis chosen after accounting for covariates; P = p-value of covariance test assessing significance of increase in 
R

2 explained; B
eta, SE, Low

er 95%
 C

I, U
pper 95%

 C
I = param

eter estim
ate, standard error, and low

er and upper lim
its of 95%

 confidence interval of regression coefficient of first hypothesis chosen; C
hr, C

oordinate = chrom
osom

e and position 
of C

pG
 site; N

earest gene, D
istance to nearest gene = G

ene sym
bol of and distance in bases to nearest gene from

 C
pG

 site (as m
easured from

 transcription start site). 
a In potentially noisy probe list of N

aeem
 et al. 2014 (i.e., cross-reactive probes, probes w

ith SN
Ps/IN

D
ELs/repeat regions, probes affected by unknow

n factors).    
b In potentially noisy probe list of C

hen et al. 2013 (i.e., cross-reactive probes, probes w
ith SN

Ps). 
*significant at p < 1.43x10

-8 , a m
ore stringent p-value threshold that accounted for the testing of seven types of adversity (1x10

-7 / 7=1.43x10
-8). 

ݻ
 N

ot identified in the m
ain analysis presented in Table 1.  
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 Table S8. D
escription of theoretical m

odels used in the analysis, using exposure to abuse as an exam
ple 

L
ifecourse m

odel tested 
D

efinition 
V

ariables 
Specific variables entered into the L

A
R

s m
odel 

A
ccum

ulation 
Sum

 of the total num
ber of tim

e periods of 
exposure to a specific adversity. To test 
w

hether the num
ber of tim

e periods of 
exposure explains the m

ost variance in 
D

N
A

m
.  

1 
abuse_accum

ulation=count of the num
ber of tim

e periods exposed to abuse 
(range 0-6) 

Sensitive period 
A

 single tim
e-point at w

hich there can be 
exposure to adversity. To test if a single 
adversity experience at a specific tim

e-point 
explains the m

ost variance in D
N

A
m

. 

6 
abuse_period1=exposed (1) vs. unexposed (0) at tim

e period 1 (8 m
onths) ; 

abuse_period2= exposed (1) vs. unexposed (0) at tim
e period 2 (1.75 years); 

abuse_period3= exposed (1) vs. unexposed (0) at tim
e period 3 (2.75 years); 

abuse_period4= exposed (1) vs. unexposed (0) at tim
e period 4 (4 years);  

abuse_period5= exposed (1) vs. unexposed (0) at tim
e period 5 (5 years);  

abuse_period6= exposed (1) vs. unexposed (0) at tim
e period 6 (6 years) 

R
ecency 

Sum
 of the total num

ber of tim
e periods of 

exposure to a specific type of adversity, w
ith 

each tim
e period w

eighted by the age in years 
of the child during exposure. To test if 
tem

poral proxim
ity to adversity events 

explains the m
ost variance in D

N
A

m
.  

1 
abuse_recency= abuse_period1 exposed (1) vs. unexposed (0)*(0.67) + 
abuse_period2 exposed (1) vs. unexposed (0) *(1.75) + abuse_period3 
exposed (1) vs. unexposed (0) *(2.75) + abuse_period4 exposed (1) vs. 
unexposed (0) *(4) + abuse_period5 exposed (1) vs. unexposed (0) *(5) + 
abuse_period6 exposed (1) vs. unexposed (0) *(6) 

In this study, accum
ulation w

as defined as the sum
 of the total num

ber of tim
e periods of exposure to a given adversity.  A

lthough accum
ulation is som

etim
es 

operationalized as the total num
ber of distinct adversity types experienced (and in this case, is often referred to as “cum

ulative risk”), w
e defined accum

ulation in 
the m

anner w
e did for the follow

ing reasons.  First, research on the effects of m
ultiple adversities or “cum

ulative risks” in general has been w
ell-covered by prior 

literature on “adverse childhood experiences” (e.g., 47, 48, 49).  O
ne of the unique contributions of the current study is its attention to differences betw

een adversity 
types and their associations w

ith D
N

A
m

 changes.  Secondly, accum
ulation m

odels that do not account for adversity type or duration offer little prom
ise for 

identifying optim
al intervention targets, given that they treat all adverse experiences as equal.  Finally, there is no unified definition of cum

ulative risk (50-52), and 
there have been m

ultiple calls in the field for m
easures that capture exposure features like developm

ental tim
ing and duration (50, 53).  O

ur operationalization, 
then, represents one attem

pt at capturing accum
ulation through the lens of duration. 

 The recency hypothesis, in turn, assum
es a linear increase in the effect of exposure over tim

e, and w
eights m

ore recent exposures m
ore heavily than m

ore distal 
ones (18).  U

nlike the last sensitive periods m
odel, w

hich captures only exposure to a given adversity w
ithin that specific tim

e period, the recency m
odel accounts 

for and w
eights all tim

e periods of exposure.    
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Figure S1. Prevalence of exposure to adversity by tim
e period 

 
Tim

e periods are very early childhood (I, before 3), early childhood (PS, ages 3-5), m
iddle childhood (M

C
, ages 6-7), and total 

exposed at any tim
e (T).  A

s show
n, age at exposure to adversity varied by the type of adversity. Fam

ily instability and neighborhood 
disadvantage w

ere m
ore com

m
on in very early childhood and early childhood (before age 4), w

hereas one adult in the household 
and financial stress w

ere m
ore com

m
on later in m

iddle childhood 
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Figure S2. Frequency each theoretical m
odel (sensitive period or additive) w

as chosen first by the LA
R

S variable selection 
procedure, for all C

pG
 sites and types of adversities tested 

 
These figures display the percent of C

pG
 sites for w

hich m
ethylation w

as best predicted by each of the theoretical m
odels, after 

controlling for covariates. The distribution of hypotheses for FD
R

-significant C
pG

 sites (FD
R

 q< 0.05) w
as significantly different 

than that for the rem
aining C

pG
 sites tested (FD

R
 q> 0.05) for financial stress (߯

2=16.92, p=0.002), and neighborhood 
disadvantage (߯

2=40.79, p<0.0001). Sensitive period m
odels w

ere m
ore often selected than additive m

odels for fam
ily instability 

and neighborhood disadvantage, w
hile the opposite w

as true for financial stress. 
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Figure S3. Circos plot of 380 FDR-significant sites 

 
The effects of adversity on methylation were distributed throughout the genome. Outer rings: 
points represent genomic locations of all FDR-significant CpG sites, colored by adversity type 
(as above). Inner links: lines connect loci associated with the same adversity type and theoretical 
model, colored by theoretical model (grey=very early childhood, blue=early childhood, 
green=middle childhood, yellow=accumulation, red=recency). 
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Figure S4. Manhattan plots displaying the only significant CpG site (cg02431672) associated with 
exposure to abuse identified by the EWAS approach 
 

 
In this Manhattan plot, the x-axis is the chromosomal position for each CpG site and the y-axis is the 
-log10 p-value for the association between exposure to adversity and DNAm values at each CpG site.  
The dashed line shows the epigenome-wide significance level, with each CpG site above the line 
representing a statistically significant association (p<1x10-7). As shown, only one CpG site was 
identified by the EWAS approach to be significantly affected by exposure to sexual or physical abuse. 
No locus was identified to be affected by other types of adversity. 
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Figure S5. Results of analyses exploring additional steps of the LARS procedure 

 
The CpG sites associated with adversity were detected by examining the first step of the 
LARS variable selection procedure.  The first step of the LARS identified the single 
theoretical model that explained the most variation in DNAm at a given CpG site.  
However, it is possible that additional theoretical models could have been chosen by the 
LARS at the second step and beyond.  We therefore evaluated this possibility by calculating 
the variance explained by additional steps of the LARS and assessed the significance of 
the increase with a covariance test at each step.  Panel A:  Additional steps of the LARS 
procedure explained marginally more variance in methylation (R2).  Panel B:  However, 
the significance of the increase in variance explained (covariance test p-value) did not 
surpass a nominal significance threshold (red dotted line: p=0.05) for any of the 38 top 
CpG sites, suggesting that there was little evidence that examining more than the first step 
of the LARS procedure would add more information. 
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Figure S6. Average methylation values over time, from birth to age 7, in ARIES 

 
 
Because some adversities could have been present prenatally and could affect methylation in utero, 
we assessed methylation at birth in umbilical cord blood at the top CpG sites.  At each top CpG 
site, we tested the predictive value of the theoretical model chosen at age 7 on methylation at birth 
with linear regression, controlling for the same covariates as described previously. We used a 
Bonferroni correction to adjust the alpha level for multiple testing.  These plots display two 
illustrative examples of DNAm values over time.  Panel A:  Methylation that was different at birth 
among those exposed vs. unexposed to postnatal adversity.  Panel B:  Methylation that was not 
different at birth among those exposed vs. unexposed to postnatal adversity. 



Dunn et al.  Supplement 

40 

 
Figure S7. Genomic locations of FDR-significant CpG sites (n=380) as compared to all 
other autosomal CpG sites tested 

 
These plots display the proportion of FDR significant CpG sites (n=380) vs. all other CpG 
sites tested annotated to specific genomic regions.  As shown, the 380 FDR-significant 
CpG sites (a) were enriched for promoter regions and depleted for enhancer regions and 
(b) differed by location relative to CpG islands. 
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Figure S8. Enrichment of Gene Ontology (GO) term clusters for the 380 FDR-significant 
CpG sites 

 
The 380 FDR-significant CpG sites were annotated to 365 genes. The plot displays 
enrichment scores (-log(P)) taken from 15 (out of 158 clusters) of GO biological process 
terms that corresponded to these 365 genes.  As shown, 11 GO term clusters were enriched 
at a nominally significant level (red dashed line=1.3, the negative logarithm of p=0.05).  
These results suggest that the top 11 GO term clusters, including positive regulation of 
developmental growth, axon development, and neuron apoptotic process, were more likely 
to be represented among genes annotated to FDR-significant CpG sites than chance 
(average enrichment p<0.05). 
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Figure S9. Genes annotated to the FDR-significant sites were more highly constrained than 
genes annotated to the remaining autosomal CpG sites tested 

 
Violin (rotated kernel density) plots of constraint scores (pLI) for genes annotated to FDR-
significant sites and the remaining CpG sites tested. pLI = probability of a gene being 
intolerant to Loss-of-Function variation.  Black points represent mean pLI values per gene 
set. Genes annotated to FDR-significant sites were more highly constrained than the rest 
of the autosomal genes tested (permutation p=0.0001), indicating a greater importance of 
these genes, on average, to survival and reproduction over human evolution. 
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Figure S10. Principal components of ancestry information inferred based on epigenome-
wide DNA methylation data 

 
Scatter plots showing patterns of ancestry inferred using an epigenome-wide DNAm data 
based principal component analysis (4). The method has been shown to reliably capture 
population structure even in the absence of genetic data. The same quality control procedure 
was performed following the guidelines provided by Rahmani et al. (4) and 473,864 CpGs 
were used in the principal component analysis, adjusting for sex and cell counts. Red dots 
indicate children who were self-reported to be non-white. As shown in these plots, we found 
no apparent outlier or pattern of population stratification; the principal components of self-
reported white and nonwhite children seemed to be well blended.  
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