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Abstract
Depression is more frequent among individuals exposed to traumatic events. Both trauma exposure and depression are
heritable. However, the relationship between these traits, including the role of genetic risk factors, is complex and poorly
understood. When modelling trauma exposure as an environmental influence on depression, both gene-environment
correlations and gene-environment interactions have been observed. The UK Biobank concurrently assessed Major
Depressive Disorder (MDD) and self-reported lifetime exposure to traumatic events in 126,522 genotyped individuals of
European ancestry. We contrasted genetic influences on MDD stratified by reported trauma exposure (final sample size
range: 24,094–92,957). The SNP-based heritability of MDD with reported trauma exposure (24%) was greater than MDD
without reported trauma exposure (12%). Simulations showed that this is not confounded by the strong, positive genetic
correlation observed between MDD and reported trauma exposure. We also observed that the genetic correlation between
MDD and waist circumference was only significant in individuals reporting trauma exposure (rg= 0.24, p= 1.8 × 10−7

versus rg=−0.05, p= 0.39 in individuals not reporting trauma exposure, difference p= 2.3 × 10−4). Our results suggest
that the genetic contribution to MDD is greater when reported trauma is present, and that a complex relationship exists
between reported trauma exposure, body composition, and MDD.

Introduction

Depression is among the most common mental illnesses
worldwide and accounts for 5.5% of all years lost through
disability globally [1]. In England ~28% of individuals self-

report depression during their lifetime [2]. The most common
clinically recognised form of depression is called Major
Depressive Disorder (MDD). Both environmental and genetic
factors influence MDD. In particular, MDD is more com-
monly observed among individuals reporting exposure to
stressful life events and early-life traumas [3–6]. In turn,
reported trauma exposure has been robustly correlated with a
range of adverse life outcomes including MDD [6–9]. The
relationship between MDD and reported trauma exposure is
complex. Reported trauma exposure is associated with both
subsequent MDD and prior MDD [10, 11]. However, the
majority of people reporting exposure to traumatic experi-
ences do not report MDD [6–9].

Twin studies show that MDD is moderately heritable,
with 30–40% of the variance in MDD attributable to genetic
factors [12]. The proportion of heritability captured by
common genetic variants, also known as single nucleotide
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polymorphism or SNP-based heritability, can be estimated
from genome-wide association study (GWAS) data. Such
estimates tend to be lower than those obtained from twin
approaches, due to the incomplete capture of genetic
information in GWAS data among other reasons [13]. The
most recent major depression GWAS from the Psychiatric
Genomics Consortium was anchored in 35 cohorts
(including the 23andMe discovery cohort [14]) recruited
with a variety of methods [15]. This meta-analysis identified
44 loci significantly associated with major depression,
and estimated a SNP-based heritability of 9–10% [15].
These results strongly suggest both the mild and more
severe forms of depression are polygenic, with potentially
thousands of variants with very small individual effects
contributing to risk.

There are far fewer genetic studies of reported trauma
exposure than of MDD. However, the available studies have
demonstrated that reported trauma exposure is heritable,
with twin heritability estimates of 20–50% [16–18] and
SNP-based heritability estimates of 30% [19]. Combining
measures of trauma exposure and depression at scale is
difficult, given the need for careful phenotyping [20].
Potential confounds include the (often unavoidable) use of
retrospective self-reported measures of trauma exposure,
which can be weakly correlated with objective measures of
traumatic experiences [9]. Furthermore, current (i.e. state)
low mood can increase self-reporting of previous trauma
exposure [9, 21]. Previous individual study cohorts have
generally been too small for effective GWAS, while meta-
analyses have contained considerable heterogeneity due to
the use of different phenotyping instruments in the included
studies.

However, some notable genome-wide analyses of MDD
and trauma exposure have been performed. A genome-wide
by environment interaction study of depressive symptoms
and stressful life events in 7179 African American women
identified a genome-wide association near the CEP350 gene
(although this did not replicate in a smaller cohort) [22]. An
investigation in 9599 Han Chinese women with severe
MDD identified three variants associated with MDD in
individuals who did not report trauma exposure prior to
MDD onset [23].

Several attempts have been made to estimate the inter-
action of overall genetic risk and trauma by using polygenic
risk scores for MDD to perform polygenic risk score-by-
trauma interaction analyses. Such studies test whether there
are departures from additivity (where the combined effect of
risk score and trauma differs from the sum of the individual
effects) or from multiplicativity (where the combined effect
differs from the product of the individual effects). Reported
results have been highly variable, with findings of both
significant additive and multiplicative interactions [24];
significant multiplicative interactions only [25]; and, in the

largest previous study published (a meta-analysis of 5765
individuals), no interactions [26].

Studies of gene–environment interaction usually assume
the genetic and environmental influences are independent
and uncorrelated [27]. However, genetic correlations
between reported trauma exposure and MDD have been
reported, both from twin studies [28–30] and from the
genomic literature [22, 26]. Reports of the magnitude of this
genetic correlation have varied widely, which reflects dif-
ferences in defining trauma exposure, and in the populations
studied. While some studies have identified a very high
genetic correlation (95%) [22], others have found no such
correlation [23]. The genetic relationship between reported
trauma exposure and MDD is therefore unresolved.

The release of mental health questionnaire data from the
UK Biobank resource provides an opportunity to assess the
relationship between genetic variation, risk for MDD, and
reported trauma exposure in a single large cohort. We
performed GWAS of MDD (as defined from the mental
health questionnaire [31]) with and without reported life-
time trauma exposure in UK Biobank European ancestry
individuals. These results enabled us to estimate the genetic
contribution (via SNP-based heritability estimation) to
MDD in individuals with and without reported lifetime
trauma exposure. To examine differences in the genetic
contribution, we calculated the genetic correlation between
MDD in individuals reporting and not reporting trauma
exposure. To assess whether the genetic relationship of
MDD to other traits varies in the context of reported trauma
exposure, we assessed genetic correlations with a wide
range of physical and psychiatric traits. Finally, we per-
formed polygenic risk scoring, using external traits com-
monly comorbid with MDD, and sought to extend previous
analyses of polygenic risk score-by-trauma interactions
in MDD.

Methods

Phenotype definitions

The UK Biobank assessed a range of health-related phe-
notypes and biological measures including genome-wide
genotype data in ~500,000 British individuals aged between
40 and 70 [32]. This includes 157,366 participants who
completed an online follow-up questionnaire assessing
common mental health disorders, including MDD symp-
toms, and 16 items assessing traumatic events (Resource 22
on http://biobank.ctsu.ox.ac.uk) [31]. Phenotypes were
derived from this questionnaire, using definitions from a
recent publication describing its phenotypic structure [31].

Individuals with probable MDD met lifetime criteria
based on their responses to questions derived from the
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Composite International Diagnostic Interview (CIDI; Sup-
plementary Table 1). We excluded cases if they self-
reported diagnoses of schizophrenia, other psychoses, or
bipolar disorder. Controls were excluded if they self-
reported any mental illness, taking any drug with an anti-
depressant indication, or had been hospitalised with a mood
disorder or met previously-defined criteria for a mood dis-
order (Supplementary Table 1) [33].

Participants were asked questions relating to traumatic
experiences in childhood using the Childhood Trauma
Screener (a shortened version of the Childhood Trauma
Questionnaire [34–36]) and an equivalent screener for
adulthood developed by the UK Biobank Mental Health
steering group to mirror the childhood items [31]. In addi-
tion, participants were asked questions related to events that
commonly trigger post-traumatic stress-disorder (PTSD).
Responses to individual questions (items) in these three
categories (child trauma, adult trauma, PTSD-relevant
trauma) were dichotomised and compared between MDD
cases and controls (Supplementary Table 2a).

We selected reported items with an odds ratio >2.5 with
MDD, to obtain a single binary variable for stratification
that captured exposure to the traumatic events most
associated with MDD. Items from all three trauma cate-
gories were reported more in MDD cases compared with
controls. Of the selected items, three referred to events in
childhood (did not feel loved, felt hated by a family
member, sexually abused). Another three items referred to
events in adulthood (physical violence, belittlement,
sexual interference), and one item assessed a PTSD-
relevant event (ever a victim of sexual assault). In order to
capture increased severity of exposure, only individuals
reporting two or more of these items were included as
reporting trauma exposure. Individuals reporting none of
the items were included as not reporting trauma exposure.
Individuals reporting a single trauma item, or who did
not provide an answer were excluded from the
analyses (Supplementary Table 1). A breakdown of
reported traumatic experiences by sex and MDD status is
provided in Supplementary Table 2b. Further discussion
of the definition of trauma exposure is included in the
Supplementary Note.

Phenotype preparation for analyses

Three sets of analyses comparing MDD cases and controls
were performed (i) overall, (ii) limited to individuals
reporting trauma exposure, and (iii) limited to individuals
not reporting trauma exposure (Table 1). In addition, sen-
sitivity analyses were performed on reported trauma expo-
sure (overall and stratified by MDD diagnosis; see
Supplementary Methods and Results, and Supplementary
Table 3). For each analysis, phenotypes were first residua-
lised on 6 ancestry principal components from the genetic
data of the European samples as well as factors capturing
initial assessment centre and genotyping batch. More details
on phenotype preparation can be found in the Supplemen-
tary Methods.

Phenotype distribution

Previous analyses have shown that, compared with the
participants in the UK Biobank as a whole, those who
completed the mental health questionnaire were more likely
to have a university degree, came from a higher socio-
economic background, and reported fewer long-standing
illnesses or disabilities [31]. Accordingly, participants were
compared across a number of standard demographic vari-
ables and common correlates of MDD: sex, age (at ques-
tionnaire), education (university degree vs. not),
neighbourhood socioeconomic status (SES, as Townsend
deprivation index [37]) and BMI (recorded from measure-
ments taken at the initial recruitment of the participants into
the biobank). For further details on these analyses, see
Supplementary Methods.

Genetic data

Genetic data for GWAS analyses came from the full release
of the UK Biobank data (N= 487,410; [38]). Autosomal
genotype data from two highly-overlapping custom geno-
typing arrays (covering ~800,000 markers) underwent
centralised quality control before being imputed in a two-
stage imputation to the Haplotype Reference Consortium
(HRC) and UK10K (for rarer variants not present in the

Table 1 Participants available
for analysis

Participants with genomic data

Reported trauma exposure No reported trauma exposure Excluded Total

MDD Cases 13,393b 9487c 6595 29,475a

Controls 10,701b 39,677c 13,104 63,482a

Groups of individuals used in each of the three analyses are in bold
aMDD in all participants (29,475 cases, 63,482 controls, N= 92,957)
bMDD in participants reporting trauma exposure (13,393 cases, 10,701 controls, N= 24,094)
cMDD in participants not reporting trauma exposure (9487 cases, 39,677 controls, N= 49,164)

1432 J. R. I. Coleman et al.



HRC) reference panels [38–40]. In addition to this central
quality control, variants for analysis were limited to com-
mon variants (minor allele frequency > 0.01) that were
either directly genotyped or imputed from the HRC with
high confidence (IMPUTE INFO metric > 0.4) [39].

Individuals were excluded where recommended by the
UK Biobank core analysis team for unusual levels of
missingness or heterozygosity, or if they had withdrawn
consent for analysis. Using the genotyped SNPs, individuals
with call rate <98%, who were related to another individual
in the dataset (KING r < 0.044, equivalent to removing
third-degree relatives and closer [41]) or whose phenotypic
and genotypic gender information was discordant (X-chro-
mosome homozygosity (FX) < 0.9 for phenotypic males,
FX > 0.5 for phenotypic females) were also excluded.
Removal of relatives was performed using a “greedy”
algorithm, which minimises exclusions (for example, by
excluding the child in a mother–father–child trio). All
analyses were limited to individuals of European ancestry,
as defined by 4-means clustering on the first two genetic
principal components provided by the UK Biobank [42].
This ancestry group included 95% of the respondents to the
mental health questionnaire—as such, the non-European
ancestry groups were considered too small to analyse
informatively. Principal components analysis was also
performed on the European-only subset of the data using the
software flashpca2 [43]. After quality control, individuals
with high-quality genotype data and who had completed the
online mental health questionnaire were retained for ana-
lysis (N= 126,522).

GWAS analyses used the imputed data as described
above. Genetic correlation analyses used the results of the
GWAS analyses. Polygenic risk score analyses and SNP-
based heritability analyses in BOLT-LMM used the geno-
typed variants [38]. These latter analyses were limited to
common variants (minor allele frequency > 0.01) with call
rate > 98% that were in approximate Hardy–Weinberg
equilibrium (HWE test p > 10−8). The same individuals
were used for analyses using the imputed and the
genotyped data.

Analyses

Genome wide association studies (GWAS)

GWAS were performed to assess the association of indi-
vidual genetic variants with MDD. These analyses were first
undertaken for the entire sample regardless of reported
trauma exposure, then stratified by reported trauma expo-
sure. GWAS were performed using linear regressions on
imputed genotype dosages in BGenie v1.2 [38], with resi-
dualised phenotypes as described above. Phenotypes
and genotypes were mean-centred and standardised.

Genome-wide significance was defined at the conventional
level p < 5 × 10−8 [44]. Results from each GWAS were
clumped to define genetic loci in PLINK2 [45]. Loci were
defined following established protocols (Supplementary
Methods) [15].

Betas from the GWAS were converted to odds ratios
(OR) using LMOR (http://cnsgenomics.com/shiny/
LMOR/) and observed sample prevalences [46]. Stan-
dard errors were calculated from the p-value and esti-
mated OR [47]. Performing GWAS on residuals, rather
than including covariates in the analysis, is a restriction
imposed by the BGenie software (which was used because
it is specifically designed for analysing the UK Biobank
genetic data). Sensitivity analyses were performed to test
for biases resulting from this method. Specifically, for
each GWAS, each variant with nominal significance (p <
0.0001) was also tested using logistic regression including
covariates in R 3.4.1, in order to confirm the results from
BGenie [48].

SNP-based heritability

Results from GWAS were combined to assess the propor-
tion of variance due to the additive effect of common
genetic variants (SNP-based heritability). SNP-based herit-
ability was calculated on the observed scale using BOLT-
LMM v2.3 [49]. The estimate for MDD in the cohort was
converted to the liability scale in R 3.4.1, assuming a
population prevalence of 28% [2, 50]. Converting estimates
of SNP-based heritability for a case-control trait from the
observed scale to the liability scale requires accurate esti-
mates of the lifetime prevalence of the trait in the (sub)
population. When comparing a trait stratified by a correlated
variable (as is the case when we compare the SNP-based
heritability of MDD stratified by reported trauma exposure),
the population prevalence in each stratum is unknown. To
address this, we approximated the expected prevalence of
MDD in individuals either reporting or not reporting trauma
exposure (Supplementary Methods). This allowed us to
convert the observed scale SNP-based heritability of MDD
to the liability scale in both strata (i.e. those reporting and
those not reporting trauma exposure). A second challenge is
that trauma exposure is itself a heritable trait that is
genetically correlated with MDD in this study. The potential
impact of this on SNP-based heritability estimation is not
intuitive. To benchmark our findings, we performed simu-
lations of SNP-level data to explore the expected SNP-
based heritability of MDD in individuals reporting and not
reporting trauma exposure, assuming differences in SNP-
based heritability resulted only from the genetic correlation
between MDD and reported trauma exposure. Further
details of these analyses are provided in the Supplementary
Methods.
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Genetic correlations

Genetic correlations (rg) were calculated to assess shared
genetic influences between MDD and other phenotypes, using
GWAS summary statistics and LD Score regression v1.0.0
[51] using the default HapMap LD reference. Two sets of
genetic correlations were calculated. First, we calculated
genetic correlations between the phenotypes examined within
this paper (internal phenotypes). We calculated the genetic
correlation between MDD and reported trauma exposure in
the full dataset, and then the genetic correlation between
MDD in individuals reporting trauma exposure and MDD in
individuals not reporting trauma exposure. Secondly, we also
calculated genetic correlations between each GWAS from this
analysis and a curated list of 308 publicly-available pheno-
types (external phenotypes) [51, 52].

Genetic correlations were tested for difference from 0
(default in LD Score), and for difference from 1 (in
Microsoft Excel, converting rg to a chi-square as [(rg− 1)/
se]2) [51, 52]. Genetic correlations were considered sig-
nificant if they passed the Bonferroni-adjusted threshold for
the effective number of traits studied in each analysis
(internal: p < 0.01; external: p < 2.5 × 10−4). The effective
number of traits was calculated as the number of principal
components explaining 99.5% of the variance in the pair-
wise genetic correlation matrix (internal: 5; external: 202).
External phenotype GWAS all had heritability estimates
such that h2/SE > 2, and produced valid (i.e. non-NA) rg
with all other phenotypes tested.

The genetic correlation of MDD with each external
phenotype was compared between individuals reporting
trauma exposure and individuals not reporting trauma
exposure using a two-stage method. First, differences were
assessed using two sample z-tests [53]. Nominally-
significant differences (p < 0.05) by this method were then
compared using the block-jackknife (Supplementary
Methods) [52, 54, 55]. Results using the jackknife were
considered significant if they passed the Bonferroni-
adjusted threshold (p < 2.5 × 10−4).

Polygenic risk scoring

Polygenic risk scores were calculated to further assess
shared genetic influences between MDD and traits known to
be correlated to MDD. Specifically, risk scores from ana-
lyses of major depression (MDD) [15], schizophrenia (SCZ)
[56], bipolar disorder (BIP) [57], body mass index (BMI)
[58] and glycated haemoglobin (HbA1c; used as a negative
control) [59] were calculated and compared in all partici-
pants and stratifying by reported trauma exposure. The PGC
major depression GWAS contained participants from UK
Biobank, so to derive the MDD risk score we used a
restricted set of summary statistics without these individuals

(but including individuals from 23andMe, whose diagnoses
were self-reported [14]). For further discussion of this
overlap, see Supplementary Note [15]. Risk scores were
calculated using PRSice v2 at seven thresholds (external
GWAS p < 0.001, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5) to allow
assessment of the spread of association between risk score
and MDD [45, 60, 61]. Analyses used logistic regression,
including all covariates used in creating the residuals for
GWAS. In total, five external phenotypes were used to
produce risk scores for the three target phenotypes (MDD
overall, and stratified by reported trauma exposure/non-
exposure), resulting in 15 analyses. A conservative Bon-
ferroni adjustment for multiple testing was used, correcting
for 105 tests (given seven thresholds and 15 analyses),
giving a final threshold for significance of p < 0.0004.

We also performed formal risk score-by-environment
analyses to estimate the effect on MDD of the interaction
between genetic variants across the whole genome (modelled
as a polygenic risk score) and reported trauma exposure.
These analyses included the same covariates used in the
GWAS, and all risk score-by-covariate and reported trauma
exposure-by-covariate interactions [62, 63]. Both multi-
plicative and additive interactions were tested. A significant
multiplicative interaction means that the combined effect of
the risk score and reported trauma exposure differs from the
product of their individual effects. Multiplicative interactions
were tested using logistic regression [25, 26]. A significant
additive interaction means that the combined effect of the risk
score and reported trauma exposure differs from the sum of
their individual effects. Additive interactions were tested
using linear regression (Supplementary Methods).

Sensitivity analyses

Differences in phenotypic variables were observed between
cases and controls. To assess the impact of including these
variables as covariates, all analyses were rerun retaining all
previous covariates and including as further covariates: age (at
questionnaire), neighbourhood socioeconomic status (SES, as
Townsend deprivation index [37]), BMI (at baseline assess-
ment), and a binary variable of education (university degree
vs. not). The same covariates were also included in polygenic
risk score and SNP-based heritability analyses. Sensitivity
analyses focussing on reported trauma exposure as an out-
come were similarly rerun (Supplementary Methods).

The majority of the sample with data on both MDD
symptoms and reported trauma status were controls who did
not report trauma (Table 1). To assess whether this dis-
balance in sample status affected our results, genetic cor-
relation analyses with external phenotypes were rerun on
ten downsampled cohorts, with 9,487 participants in each
group (the number of cases not reporting trauma exposure;
see Supplementary Methods).
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In order to test whether our definition of trauma exposure
affected the main finding of our paper, we performed three
further sensitivity analyses, redefining reported trauma expo-
sure. First, we assessed if our main finding was robust to
changing the threshold for including MDD-relevant trauma,
by redefining reported trauma exposure as a report of (i) one
or more and (ii) three or more of the seven MDD-relevant
trauma items. Second, we assessed whether the timing of
trauma exposure affected this finding by redefining reported
trauma exposure as a report of (iii) one or more of the five
childhood trauma items. We then re-analysed the heritability
of MDD in individuals reporting and not reporting trauma
exposure using these three alternative definitions.

Results

Phenotype distribution

Phenotypic and genetic data were available on
24,094–92,957 individuals (Table 1). Overall, 36% of
individuals met our definition of MDD-relevant trauma
exposure, and were more frequently cases (45%) than
controls (17%; OR= 5.23; p < 10−50, chi-square test). We
assessed a number of phenotypic correlates of depression to
confirm that these correlates differed between MDD cases
and controls, and to assess whether these differences were
affected by trauma exposure. Cases differed significantly
from controls overall. Individuals with MDD were mostly
females, significantly younger, less likely to have a uni-
versity degree, came from more deprived neighbourhoods,
and had higher BMI at recruitment. These differences per-
sisted when the cohort was limited just to individuals
reporting trauma exposure, and when the cohort was limited
just to individuals not reporting trauma exposure. Further-
more, cases reporting trauma exposure differed from cases
not reporting trauma exposure, in that they were mostly
females, younger, more likely to have a degree (note dif-
ference from case-control comparisons), came from more
deprived neighbourhoods, and had higher BMI at recruit-
ment. The same differences (in the same direction) were
observed between controls reporting and not reporting
trauma exposure (all p < 0.05; Supplementary Table 4).

Genome-wide association studies

We performed GWAS for MDD overall and stratified by
reported trauma exposure to obtain results for heritability
and genetic correlation analyses (Supplementary Table 5;
Supplementary Figs. 1–3). No analysis showed evidence of
genome-wide inflation attributable to confounding (the 95%
confidence intervals of all regression intercepts from LD
Score included 1; Supplementary Table 6). One genome-

wide significant locus (rs11515172, Chr 9:11 Mb, p=
3.82 × 10−8) was identified in the analysis of MDD overall,
and remained significant when using logistic regression
(p= 4.69 × 10−8, OR= 0.96, SE= 0.007; Supplementary
Table 5). This locus has been repeatedly associated with
depression [15, 64, 65], and with neuroticism [66–69].
However, it should be noted that all of these studies
included UK Biobank. The locus is intergenic, and is not
annotated to any currently known biological feature of
interest (Supplementary Table 7).

SNP-based heritability

First we estimated the observed scale SNP-based herit-
ability of MDD overall and stratified by reported trauma
exposure. Second, in order to assess whether the relative
influence of genetic variants on MDD differed by reported
trauma status, we converted SNP-heritabilities to the liabi-
lity scale. We assumed a prevalence of 28% for self-
reported MDD in the full population [2]. Based on this, and
on the ratio of MDD cases:controls in the sample, we
estimated the prevalence of MDD in the trauma-exposed
population as 52%, and in the unexposed population as
17%. Using these estimates of population prevalence, the
liability scale estimate of MDD SNP-based heritability was
20% (95% confidence interval: [18–22%]) overall. In those
reporting trauma exposure, the liability scale SNP-based
heritability of MDD was 24% [18–31%], and in those not
reporting trauma exposure it was 12% [7–16%]. The SNP-
based heritability of MDD was significantly greater in
individuals who reported trauma exposure compared to
those who did not (p= 0.0021, Z-test).

These estimated SNP-heritabilities could be confounded
by genetic correlation between MDD and reported trauma
exposure. We designed and conducted simulations of SNP-
level data to quantify the expected difference in SNP-based
heritability from genetic correlation alone (Supplementary
Methods). Our simulations yielded expected estimates for
the liability scale SNP-based heritability of MDD of
14–15% in those reporting trauma exposure, and 15–16% in
those not reporting trauma exposure (Supplementary
Methods). This small difference in expected SNP-based
heritability for those reporting and not reporting trauma is in
the opposite direction to our findings. This suggests that our
findings cannot be explained by genetic correlation between
MDD and reported trauma exposure, nor by the transfor-
mation from the observed scale to the liability scale.

Genetic correlations

Genetic correlations were calculated between MDD and
reported trauma to explore the genetic relationship between
these traits. Further genetic correlations were calculated

Genome-wide gene-environment analyses of major depressive disorder and reported lifetime traumatic. . . 1435



between MDD in the two strata to assess whether genetics
influences on MDD differ in the context of reported trauma
exposure (Supplementary Table 8).

We observed a significant rg between MDD and reported
trauma exposure in the full cohort (0.62 [95% CI:
0.76–0.94], p < 10−50). Given that trauma items were
selected for association with MDD, we also calculated the
genetic correlation between MDD in the full cohort and
reported trauma exposure in just the controls, which was
also significant (0.31 [0.18–0.45], p= 4 × 10−6; Supple-
mentary Table 8). This correlation persisted when using
independent major depression GWAS summary statistics,
as reported trauma exposure was significantly correlated
with the MDD polygenic risk score (Spearman's rho=
0.0675, p < 10−50) [15]. The genetic correlation between
MDD in individuals reporting trauma exposure and MDD in
individuals not reporting trauma exposure was high and
did not differ significantly from 1 (rg= 0.77 [0.48–1.05];
difference from 0: p= 1.8 × 10−7; difference from 1:
p= 0.11).

Genetic correlations were calculated between MDD and
all available external traits to systematically assess whether
genetic relationships with MDD differed in the context of
reported trauma exposure. All psychiatric traits included
were significantly associated (p < 2.5 × 10−4) with MDD,
but this association did not differ substantially in magnitude
between the groups reporting and not reporting trauma
exposure (z-test for comparisons of rg−Δrg—ranged from
p= 0.10–0.99; Fig. 1). In contrast, waist circumference was
significantly associated with MDD only in individuals
reporting trauma exposure (rg= 0.24), and the correlation
was significantly larger than that in individuals not reporting
trauma exposure (rg=−0.05, jackknife pΔrg= 2.3 × 10−4).
Other correlations between MDD and body composition,
reproductive, and socioeconomic phenotypes were larger in
the group reporting trauma exposure compared to indivi-
duals not reporting trauma exposure, but these differences
did not remain significant following multiple testing cor-
rection (all jackknife p > 2.5 × 10−4; Fig. 1, Supplementary
Table 9).

Polygenic risk scores across strata

We performed polygenic risk score analyses to further
explore how stratification by trauma status affects the
genetic relationship between MDD and specific correlates
of MDD, and to mirror previous analyses in the literature
(Fig. 2, Table 2; see Supplementary Table 10 for full details
of all risk score analyses, including the number of SNPs in
each score) [26]. Individuals with high genetic risk scores
for MDD were more likely to be cases than controls, and a
significant additive interaction term was observed from
linear regression. Specifically, the combined effect of the

MDD risk score and reported trauma exposure on MDD
was greater than the sum of the individual effects (beta > 0,
Table 2 central panel). However, the multiplicative inter-
action term was not significant (p > 0.01). The presence of
an interaction on the additive scale reflects the greater SNP-
based heritability of MDD in individuals reporting trauma
exposure (SNP− h2= 24%) compared with those not

Fig. 1 Genetic correlations between MDD (overall and stratified by
reported trauma exposure) and selected traits and disorders. Full
genetic correlation results are available in Supplementary Table 9.
Numbers= genetic correlations. Colour= direction of effect (blue=
positive, red= negative). Colour intensity= size of correlation. Upper
and lower bars are 95% confidence interval of genetic correlation
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reporting trauma exposure (SNP− h2= 12%), as described
above.

In contrast, although those with higher BMI risk scores
were more likely to be cases than controls, this only passed
correction for multiple testing in individuals reporting
trauma exposure. Both the additive (beta > 0) and the mul-
tiplicative (OR > 1) interaction terms were significant, sug-
gesting the combined effect on MDD from BMI risk score
and reported trauma exposure together was greater than
expected from both the sum of the individual risks and from
their product, respectively (OR > 1).

Individuals with high genetic risk scores for SCZ were
more likely to be cases than controls, but this did not differ
between strata (both interaction terms p > 0.01). Individuals
with higher BIP risk scores were also more likely to be
cases than controls—although this association was not

Fig. 2 Association between MDD polygenic risk score (PRS) and
MDD. Individuals reporting trauma exposure are shown as orange
triangles, and those not reporting trauma exposure as green dots.
a shows the relationship on the linear additive scale, and b shows the
relationship on the multiplicative scale. A significant interaction is
observed on the additive scale only, as shown by differing slopes of
the two regression lines in panel a
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significant in the subset of individuals reporting trauma
exposure, no significant interaction term was observed,
suggesting the observed difference in results within-strata
may be due to differences in power. No significant differ-
ences were observed in the negative control analysis
with HbA1c.

Sensitivity analyses

Four sets of sensitivity analyses were performed. In the first
set, all analyses were repeated using reported trauma
exposure as the phenotype, assessed overall and stratified by
MDD (as opposed to the primary analysis, where MDD was
the phenotype and analyses were stratified by reported
trauma exposure). Results from these analyses were broadly
similar to the results from the primary analysis (Supple-
mentary Tables 3–11, Supplementary Figs. 4–7).

The second set of sensitivity analyses repeated the pri-
mary analyses with additional covariates to assess the
impact of controlling for age, neighbourhood socio-
economic status, BMI, and education. This did not alter the
conclusions drawn from the GWAS and SNP-based herit-
ability analyses, nor from the genetic correlations observed
between the internal phenotypes (those assessed in this
study; Supplementary Tables 12–17). Genetic correlations
between MDD and external phenotypes did not differ sig-
nificantly from the main analysis (all z-test p < 0.05), but
were sufficiently attenuated that the genetic correlations of
MDD with waist circumference was no longer significantly
different between individuals reporting and not reporting
trauma exposure. Differences in the polygenic risk score
analyses were limited to analyses involving the BMI risk
score. In analyses adjusted for phenotypic BMI, the BMI
polygenic risk score was no longer associated with MDD in
any analysis, and no interactions including the BMI risk
score remained significant.

The third set of sensitivity analyses repeated the genetic
correlation analyses, but downsampled the analysed cohort
such that each of the four groups (MDD cases/controls
reporting/not reporting trauma exposure) had 9487 partici-
pants (the size of the smallest group from the main analysis,
cases not reporting trauma exposure). In these analyses,
genetic correlations between MDD and external phenotypes
were attenuated across most phenotypes, but not sig-
nificantly (two-sample z-tests, all p > 0.05; Supplementary
Table 18). As such, the general pattern of genetic correla-
tions observed in the main analysis was retained, although
the genetic correlations of MDD with waist circumference
was no longer significantly different between individuals
reporting and not reporting trauma exposure.

The final set of sensitivity analyses repeated the SNP-
based heritability analyses of MDD in individuals reporting
and not reporting trauma exposure, altering the definition of

reported trauma exposure in three ways (increasing and
decreasing the number of items required to be defined as
reporting trauma exposure, and limiting the items con-
sidered to only childhood experiences). The purpose of
these analyses was to test the robustness of our key finding
(greater MDD SNP-based heritability in trauma-exposed
individuals compared with those not reporting trauma
exposure). Neither increasing nor decreasing the number of
MDD-relevant items selected, nor focussing on childhood
items, altered our conclusions (Supplementary Table 19).

Full results for all four sensitivity analyses, and for
variant-level gene-by-environment interaction analyses
(Supplementary Table 20), are included in the Supple-
mentary Material.

Discussion

We investigated the relationship between MDD and self-
reported trauma exposure in the largest single cohort
available to date (N= 73,258 with MDD and reported
trauma data). The SNP-based heritability of MDD was
higher in individuals reporting trauma exposure than in
individuals not reporting trauma exposure. This was not
explained by gene–environment correlation, or the trans-
formation of SNP-based heritability from the observed to
the liability scale. Despite the significant difference in SNP-
based heritability across the two strata, the genetic corre-
lation between MDD in individuals reporting and not
reporting trauma exposure was not statistically different
from 1. Polygenic risk score-by-reported trauma exposure
interaction analyses identified significant interactions for
both MDD and BMI risk scores. However, the interactions
involving the BMI risk score appear to be explained by
differences in measured BMI between MDD cases and
controls. Finally, a significant genetic correlation between
MDD and waist circumference was observed only in indi-
viduals reporting trauma exposure, and was absent from
those not reporting trauma exposure.

A number of limitations should be considered when
assessing our results. Our simulations suggest that our SNP-
based heritability differences did not result from
gene–environment correlation between MDD and reported
trauma exposure, nor the conversion of observed scale SNP-
based heritabilities to the liability scale. However, we could
not address further sources of potential bias. These could
arise from non-additive genetic architectures, ascertainment
bias and the effects of covariates not included in the model
[70, 71], or from potential collider bias resulting from
selection bias [72]. We also assumed that the population
prevalence of reported trauma exposure can be extrapolated
from that observed in this sample (see Supplementary
Methods). Although the UK Biobank allows us to integrate
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genetic and environmental data at scale, and is a reasonably
homogeneous cohort, it also has a “healthy volunteer bias”,
whereby the participants tend to have better overall health
and higher socioeconomic status compared with the
equivalent overall population of this age [73]. It is possible
that the depressive and traumatic experiences reported by
these participants may not generalise to the whole popula-
tion, or to clinically-ascertained cases. Furthermore, we
focussed on European ancestry; further studies in non-
European populations are required [74].

To obtain further insight into the association of genome-
wide genetic variation and reported trauma exposure
with MDD (and to enable comparison with previous studies
[24–26]), we carried out polygenic risk score-by-
environment interaction analyses. There are a number of
limitations to consider when interpreting such analyses.
Polygenic risk score-by-environment interaction analyses
test a specific hypothesis, namely that the overall associa-
tion of common variants with the outcome (modelled as a
risk score) varies dependent on the environmental exposure
being tested. We did not test the existence of specific
variant-by-environment interactions, including those fea-
turing variants contributing to the risk score. Furthermore,
we cannot exclude the possibility that the correlation
between the MDD and BMI risk scores with reported
trauma exposure may alter the observed interactions. This
prevents the drawing of strong conclusions, especially given
the limited predictive power of the risk scores used in this
study (Supplementary Table 10).

Throughout this paper, we have referred to our depres-
sion phenotype as “MDD” rather than “major depression”.
We do this because our definition is based on the CIDI-SF,
which has previously been shown to have good con-
cordance with direct clinical assessments of MDD [75, 76].
However, it should be noted that direct assessment was not
performed, and our MDD cases may not have met criteria
within a clinical setting. Nonetheless, genetic correlations
between studies of clinical MDD and our definition are very
high, suggesting there is strong genetic continuity across
different methods of assessing depression [15, 65].

Trauma exposure was defined in this study using retro-
spective self-report. This is not the ideal measure for this
phenotype, and precludes robust measurement of the
severity and timing of the reported trauma exposure.
However, retrospective report is the only feasible option for
cohorts large enough to enable detailed genetic analyses of
the interaction between trauma and MDD. Retrospectively
reported trauma and MDD are also not robust to reverse
causation, and our results cannot strongly inform any tem-
poral or causal hypotheses about their relationship. Such
hypotheses could be tested using (extensive) longitudinal
studies or through more powerful genomic studies of
trauma exposure including data from similar or larger

cohorts. This could enable the identification of sufficient
robustly associated genetic variants to inform approaches
such as Mendelian randomisation (which we were under-
powered to examine in this study). In addition, future work
may benefit from assessing the heritability of broader
depression phenotypes that lie beyond our binary criteria,
including reward sensitivity and negative valence traits [77].

Our findings suggest that the genetic variants associated
with MDD are the same in individuals reporting and not
reporting trauma exposure, because the genetic correlation
between MDD measured in these two groups was not sig-
nificantly different from 1. However, the SNP-based herit-
ability of MDD was greater in individuals reporting
compared to not reporting trauma exposure. This suggests
that the combined effect of the variants associated with
MDD is greater in people reporting trauma exposure than in
those who do not. The mechanism underlying this finding is
uncertain. One possibility is that exposure to traumatic
events might amplify genetic influences on MDD beyond
the magnitude of the effects seen in the absence of trauma
(consistent with the stress-diathesis hypothesis [78–80]).
The concept that genetic variance varies with exposure to
different environments is well-recognised in studies of
animal populations in the wild [81]. However, the opposite
may also be true; genetic influences on MDD could increase
an individual's likelihood of experiencing and/or reporting
trauma, and through doing so increase the apparent herit-
ability of MDD by partly incorporating genetic influences
related to trauma reporting itself [11]. A third possibility
relates to the components of variance involved in calculat-
ing SNP-based heritability. Phenotypic variance can be
attributed either to the SNPs measured in the GWAS, or to
environmental sources of variance reflecting all phenotypic
variance not explained by common variants. It is possible
that the genetic variance is constant across the strata, but
that the environmental variance is decreased when only
considering individuals reporting trauma exposure, due to
the shared (and thus more similar/less variable) exposure of
these individuals to MDD-relevant traumatic experiences.
This would result in greater heritability in individuals
reporting trauma exposure. These explanations are potential
interpretations of these findings but are not the only possi-
bilities. It is also likely that multiple such mechanisms are
involved.

A final, separate, possibility is that self-report is impaired
in the group reporting trauma exposure. Reported trauma
exposure is associated with an increased prevalence of
multiple psychiatric disorders including personality dis-
orders. The rapidly fluctuating symptoms of personality
disorders can reduce the reliability of self-report in affected
individuals [82]. If self-report is less reliable in those
reporting trauma exposure, this would affect the accuracy of
our MDD definition in this group, such that the cases in this
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group may also include unreported cases of excluded dis-
orders with higher heritability, such as bipolar disorder or
schizophrenia. Although the reported prevalence of per-
sonality disorder diagnosis in this cohort is too low to
explain the observed differences in SNP-based heritability
(142/22,880 MDD cases, <1% of MDD cases), the parti-
cipants in the study have not undergone more extensive
assessment, and further diagnoses of personality disorders
may have been missed.

In polygenic risk score-by-reported trauma exposure
interaction analyses, we identified a significant interaction
on the additive scale for the combined effect of the MDD
risk score and reported trauma exposure on risk of MDD.
These results are also reflected in the larger SNP-based
heritability of MDD in exposed compared to unexposed
individuals. The simplest explanation for this result is that
the effects of the MDD risk score and reported trauma
exposure on MDD combine multiplicatively, such that
their combined effects are greater than the sum of their
individual effects. For the BMI risk score however, the
interaction with reported trauma exposure appears to be
more complex, combining neither additively nor multi-
plicatively. In sensitivity analyses controlling for BMI
(obtained at recruitment, approximately five years before
the mental health questionnaire), the BMI risk score-by-
reported trauma exposure interaction was no longer sig-
nificant, suggesting that the observed interaction can be
explained by differences in measured BMI. Further
research, with concurrent measurements of BMI, trauma
exposure and MDD in a longitudinally-sampled cohort
would offer further insight into the relationship between
these three variables.

The high genetic correlation between MDD in indivi-
duals reporting and not reporting trauma exposure was
supported by significant genetic correlations between MDD
and other psychiatric disorders regardless of reported
trauma exposure. In individuals reporting trauma exposure,
a further significant genetic correlation was observed
between MDD and waist circumference, which was sig-
nificantly greater than the equivalent correlation in those not
reporting trauma exposure. Although not significant, there
was also a general pattern of higher genetic correlations
between MDD and several weight-related measures and
educational attainment, in individuals reporting trauma
exposure. This is consistent with previous literature on
traumatic experiences and related phenomena such as
Adverse Childhood Experiences, which has found that they
are associated not only with psychiatric risk but also with
wide-ranging impairments in social and health outcomes
including obesity and (less) education [83–86]. However,
we stress that causal conclusions cannot be drawn from
these (or our) data, or that the reported trauma exposure is
responsible for the observed differences.

Our estimate of the SNP-based heritability of MDD
(20%) is higher than that reported in previous studies of
major depression (~9%) [15]. This may be explained by the
relative homogeneity of the UK Biobank compared to
previous meta-analyses. The UK Biobank is a single-
country cohort ascertained using a consistent protocol. The
same questionnaire was used to gather symptom data, and
the samples were stored, extracted, and genotyped using a
single method. In contrast, meta-analyses have needed to
combine diverse ascertainment, sampling, and genotyping;
SNP-based heritability has been reported to decrease with
increasing numbers of meta-analysed samples [87].

Previous analyses have assessed alternative depression
phenotypes in the UK Biobank [65]. Our MDD phenotype
(based on DSM criteria for MDD) is most similar to the
probable MDD phenotype from Howard et al, rather than
the less strictly-defined "broad depression" phenotype,
which includes those who seek treatment for depression,
anxiety and related phenotypes. Our summary statistics
LDSC-based estimate is higher than the equivalent from
Howard et al (4–5%). However, our estimate using geno-
type data (20%) is within the bounds of equivalent estimates
by geographic region reported for the probable MDD
(0–27.5%) phenotype. We note that our MDD phenotype
definition may have more specificity than the probable
MDD phenotype used in Howard et al.

Our results also differ in several respects from those of a
study of MDD and adversity in Han Chinese women [23].
No difference in the SNP-based heritability of MDD
between individuals reporting and not reporting trauma
exposure was observed in the previous study, and we did
not replicate individual variant results. However, this is
unsurprising, as there are a number of differences between
the studies of which the primary one is sample size (this
study: 73,258; CONVERGE: 9599). Other differences
included culture and ethnicity, and the deeper phenotyping
methodology applied in CONVERGE, resulting in a severe
inpatient MDD phenotype. Notably, the previous study did
not report a genetic correlation between MDD and trauma
exposure [23].

Sensitivity analyses focussed on trauma found that self-
reported traumatic experience was significantly heritable, as
has been previously observed [19]. We strongly emphasise
that this does not necessarily imply that traumatic experi-
ences themselves have a biological component—such
experiences may be associated with other significantly
heritable traits, and their biology would then be reflected in
the observed heritability of trauma exposure. One potential
set of heritable traits that may be associated with reporting
traumatic experiences are personality traits such as risk-
taking, and this might explain the observed genetic corre-
lations with psychiatric traits. A similar phenomenon has
been proposed to underlie observed genetic correlations
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with socioeconomic status [88]. Our trauma exposure
measure relies on retrospective self-report, which is itself
correlated with personality traits and mood at time of report
[9]. This may also explain the genetic correlations we
observe with reported trauma exposure (including in con-
trols, who do not report previous psychiatric illness).

In summary, we find that genetic associations with MDD
in UK Biobank vary by context. Specifically, the SNP-
based heritability of MDD is larger in individuals reporting
trauma exposure compared to those not doing so. Further-
more, the genetic correlation of MDD with waist cir-
cumference was significant only in individuals reporting
exposure to trauma. Nonetheless, a strong genetic correla-
tion was observed between MDD measured in the two
strata. Together, these findings suggest the relative con-
tribution of genetic variants to variance in MDD is greater
when additional risk factors are present.

Code availability

Analytical code underlying this project will be made
available at https://github.com/tnggroup.
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Supplementary Figure 1 

 

Supplementary Figure 1: Manhattan plot of individual variant GWAS results for MDD  



 

 

 

 

 

Supplementary Figure 2 

 

Supplementary Figure 2: Manhattan plot of individual variant GWAS results for MDD 

in individuals reporting trauma exposure 
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Supplementary Figure 3: Manhattan plot of individual variant GWAS results for MDD 

in individuals not reporting trauma exposure 
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Supplementary Figure 4: Manhattan plot of individual variant GWAS results for 

reported trauma exposure 
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Supplementary Figure 5: Manhattan plot of individual variant GWAS results for 

reported trauma exposure in MDD cases 

  



Supplementary Figure 6 

 

Supplementary Figure 6: Manhattan plot of individual variant GWAS results for 

reported trauma exposure in controls 
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Supplementary information for "Genome-wide gene-environment analyses of 1 

major depressive disorder and reported lifetime traumatic experiences in UK 2 

Biobank" 3 

 4 

Supplementary Note 5 

 6 

Defining reported trauma exposure 7 

 8 

 In this study, we sought to define reported trauma exposure with the aim of 9 

obtaining a single binary variable for stratification that reflected an overall exposure 10 

to a severe and potentially depressogenic environment. In doing so, we consulted a 11 

number of experts in the field of early-life trauma and stressful life events (including 12 

authors AD, BM, and MH among others). The complexity of defining reported trauma 13 

exposure is apparent from the multiple approaches that have been used in the field, 14 

and we do not suggest that the definition used here represents a gold-standard. 15 

However, we believe this is a reasonable definition of reported exposure given the 16 

necessary limitations of obtaining such data in a biobank-scale dataset.  17 

Our definition included only items that were enriched in cases in this cohort, 18 

which we defined as having an OR > 2.5. This threshold results in only considering 19 

types of trauma more common in major depressive disorder (MDD) cases than in 20 

controls (Supplementary Table 2b). A side-effect of this is that the items on which we 21 

focus are more enriched in females than in males. As such, our enrichment for 22 

reported trauma exposure also reflects an enrichment for female sex, and for types 23 

of trauma that are more commonly reported by women. 24 



 
 

2 
 

We then defined individuals reporting two types of traumatic experience as 1 

reporters and those reporting no traumatic experiences as non-reporters. Individuals 2 

reporting only a single type of trauma were excluded. We did this because we 3 

wished to capture severe trauma, and felt that a single type of exposure may not 4 

represent such. This is imperfect, for a number of reasons. A single type of trauma 5 

may be depressogenic for a given individual, regardless of its wider effect in the 6 

population; however, the false positive rate of this more relaxed definition will be 7 

higher than a multi-item measure, given that 50% of the sample reported at least one 8 

traumatic experience. Reporting a type of trauma does not capture the severity of the 9 

trauma; however, the data available in the UK Biobank does not allow for a robust 10 

examination of trauma severity, and so multiple trauma reports are the best proxy 11 

available. 12 

We included three measures of sexual trauma in our trauma definition. These 13 

are correlated, and so some participants may be defined as reporting trauma 14 

exposure from a single incident. However, the different sexual traumas are not 15 

nested; for example, within the analysed sample, only 3,758/7,179 (52%) individuals 16 

endorsing "interference by a partner" also endorsed "victim of sexual assault". This 17 

may result from semantic and contextual differences in how the questions were 18 

asked. The full sexual assault question is "In your life, have you been a victim of a 19 

sexual assault, whether by a stranger or someone you knew", and the sexual 20 

interference question is "Since I was sixteen, a partner or ex-partner sexually 21 

interfered with me, or forced me to have sex against my wishes". It is possible that 22 

participants felt that the first question encompassed more behaviours than the 23 

second. As such, we considered including all three items was justified, as excluding 24 

(for example) "interference by a partner" because it was correlated with "victim of 25 
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sexual assault" could result in misclassification of individuals reporting the former but 1 

not the latter.  2 
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Overlap with PGC major depression GWAS 1 

 The PGC major depression GWAS contained participants from UK Biobank 1. 2 

Overlap of this kind upwardly biases results from polygenic risk scoring. Accordingly, 3 

we used a restricted set of summary statistics without these individuals (but including 4 

individuals from 23andMe 2). This addressed the major source of overlap between 5 

these cohorts. Further overlap may exist, but is difficult to quantify, as individual-level 6 

data is not available for all individuals in the PGC major depression GWAS. 7 

However, the deviation of the LD Score genetic covariance intercept from 0 8 

represents a crude measure of sample overlap, assuming there is no shared 9 

confounding (such as population stratification) between the cohorts tested 3,4. The 10 

genetic covariance intercept in this case was -0.0061 (SE: 0.0063), indicating any 11 

remaining sample overlap is negligible.  12 

 13 

Additive interactions - linear regression or RERI? 14 

Linear regression was used in this analysis to test interaction as deviation 15 

from additivity, as has been used previously 5. However, an alternative method would 16 

be to calculate relative excess risk from interactions (RERI; 6), as has also been 17 

used previously 7. The use of linear regression in this context is less well-described 18 

than RERI, and may give an inaccurate estimate of interaction when there are 19 

sizable differences between the proportion of cases in the sample and in the 20 

population. However, there is only a minor difference between the proportion of 21 

cases in the sample (31.7%) and the population incidence of self-reported 22 

depression in England (28% 8), so this limitation is unlikely to affect our additive 23 

interaction analysis.  As such, both methods were used.  24 
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Supplementary Methods 1 

 2 

Further information on main analyses 3 

 4 

Phenotype distribution 5 

 Participants were compared across a number of standard demographic 6 

variables and common correlates of MDD: sex, age (at questionnaire), education 7 

(university degree vs. not), neighbourhood socioeconomic status (SES, as 8 

Townsend deprivation index 9) and BMI (recorded from measurements taken at the 9 

initial recruitment of the participants into the biobank). For dichotomous variables 10 

(sex and education), comparisons were made using chi-square tests. For 11 

approximately continuous variables (age, SES and BMI), the skewness and kurtosis 12 

of the distribution was checked, and roughly normal variables (absolute values of 13 

skewness (as b1) and kurtosis (as b2) <= 2; 10) were compared using Welch's t-tests. 14 

Non-normal continuous variables were compared using Mann-Whitney U tests. All 15 

comparisons were performed in R.3.4.1, using skewness and kurtosis calculations 16 

from the e1071 package 10–12. An additional breakdown of individual trauma items by 17 

sex was performed.  18 

 19 

Genome Wide Association Studies (GWAS) 20 

GWAS were performed using linear regressions on imputed genotype 21 

dosages in BGenie v1.2 13, with residualised phenotypes. Deviance residuals were 22 

obtained from logistic regressions in R.3.4.1 11. Six principal components were used 23 

because investigations suggested this was necessary to control for geographical 24 
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variation in the dataset, and that increasing this number had negligible additional 1 

benefits (data not shown). 2 

  Results from each GWAS were clumped to define genetic loci in PLINK2 14. 3 

Loci were defined following established protocols 1. Each locus comprised all 4 

variants with p < 0.0001 in linkage disequilibrium (r2 > 0.1 in European subjects from 5 

the 1000 Genomes Phase 3 release 15) with a nearby (< 3Mb) variant with a lower p-6 

value. Neighbouring (< 50kb) or overlapping clumps were merged using bedtools 16. 7 

Loci were annotated using RegionAnnotator v1.63 8 

(https://github.com/ivankosmos/RegionAnnotator) to identify proximal (< 100kb from 9 

loci boundaries) features of interest using data from the NHGRI-EBI GWAS Catalog; 10 

OMIM; GENCODE genes; genes previously implicated in autism and/or intellectual 11 

disability; copy-number variants previously implicated in psychiatric disorders; and 12 

mouse knockout phenotypes.  13 

 14 

Sensitivity analyses 15 

Sensitivity analyses were performed as described below. For all analyses, 16 

phenotypes were residualised using the same process and covariates as described 17 

in the main text. 18 

 19 

Reported trauma exposure 20 

Three sets of analyses were performed comparing (i) all individuals reporting 21 

trauma exposure with those not reporting exposure, (ii) limiting just to MDD  cases, 22 

and (iii) limiting just to controls. Participants included in the overall reported trauma 23 

exposure analysis, and the analyses stratified by MDD, were compared across the 24 

same phenotypic variables used in the main analysis. All analyses performed in the 25 
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main paper were repeated focussed on reported trauma exposure, with the 1 

exception of stratified heritability analyses, as we felt the results of such analyses 2 

would be difficult to interpret. 3 

 4 

Covarying for age, education, neighbourhood SES and BMI 5 

 Analyses of MDD (overall, in individuals reporting trauma exposure, in 6 

individuals not reporting trauma exposure) and reported trauma exposure (overall, in 7 

cases, in controls) were repeated, retaining all previous covariates and including as 8 

further covariates age (at questionnaire), neighbourhood socioeconomic status 9 

(SES, as Townsend deprivation index 9), BMI (at baseline assessment), and a binary 10 

variable of education (university degree vs. not). All analyses performed in the main 11 

paper (and as described above, focussed on reported trauma exposure) were 12 

repeated. 13 

 14 

Downsampled cohorts 15 

 Most of the sample with data both on MDD symptoms and on reported trauma 16 

status were controls who did not report trauma (Table 1). To assess whether this 17 

disbalance in sample status affected our results, analyses of genetic correlations 18 

between external phenotypes and MDD (i) overall, (ii) in individuals reporting trauma 19 

exposure, and (iii) in individuals not reporting trauma exposure were repeated using 20 

ten downsampled cohorts. Downsampled cohorts were produced by downsampling 21 

both MDD case groups (reporting and not reporting trauma exposure) and the 22 

control group not reporting trauma exposure to 9,487 (the smallest group, controls 23 

reporting trauma exposure). Downsampling was performed in R 3.4.1, using random 24 

selections of individuals from each group, and was repeated ten times to reduce 25 
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selection biases 11. Genetic correlations with all external phenotypes were performed 1 

in LD Score for each of the six analyses (MDD overall and stratified, and reported 2 

trauma exposure overall and stratified) as detailed in the main paper. The mean 3 

average SNP-heritability estimates and mean average standard errors from each of 4 

the ten cohorts were calculated. From each analysis, the average genetic correlation 5 

with each external phenotype was compared to the relevant correlation from the 6 

main analyses 17. The difference between correlations with MDD in individuals 7 

reporting and not reporting trauma exposure were also compared, and then these 8 

differences were compared to those from the main analysis. All comparisons used 9 

two-sample z-tests. Use of the block jackknife was not possible as the results were 10 

averaged across downsampled cohorts. Equivalent comparisons were made for 11 

analyses of reported trauma exposure in cases and in controls. 12 

 13 

Alternative definitions of reported trauma exposure 14 

In order to test the robustness of our main finding (that the SNP-heritability of 15 

MDD is greater in individuals reporting trauma exposure compared to those who do 16 

not), we repeated this analysis with three alternative definitions of reported trauma 17 

exposure. Our first two alternatives altered the threshold for including MDD-relevant 18 

traumas, firstly decreasing the threshold from reporting two such traumas to 19 

reporting one, and secondly increasing it to reporting three MDD-relevant traumas.  20 

Our third alternative altered the definition itself to focus only on childhood traumas. 21 

We considered all five childhood traumas, and defined reported trauma exposure as 22 

a report of any of these five (Supplementary Table 2a). Traumas in adulthood and 23 

PTSD-relevant traumas were not considered for the purpose of this final alternative 24 
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(so individuals defined as not reporting trauma on this measure may still report 1 

traumatic experiences later in life).  2 

 3 

Heritability analyses stratified by reported trauma exposure 4 

 5 

We aimed to compare the SNP-heritability of MDD in individuals reporting 6 

trauma exposure with those not doing so. Typically, such a comparison could be 7 

achieved by converting the SNP-heritability estimates from the observed scale 8 

(which is dependent on the proportion of cases in the cohort) to the liability scale 9 

(independent of the proportion of cases in the study and of the population 10 

prevalence). We calculated the proportion of individuals with MDD in each group (i.e. 11 

we converted Table 1 from counts to proportions). We then assumed that the 12 

population prevalence of self-reported MDD = 28% 8 and that individuals with trauma 13 

exposure were sampled representatively from the population in cases and in 14 

controls. This allows the calculation of population prevalences for MDD in individuals 15 

reporting (52%) and not reporting trauma exposure (17%). With these estimates, and 16 

observed scale SNP-heritability estimates from BOLT-LMM, we estimated of liability 17 

scale SNP-heritability estimates for MDD in individuals reporting and not reporting 18 

trauma exposure, and compared them using a two-sample z-test (Supplementary 19 

Table 6). 20 

However, the conversion from the observed to the liability scale assumes the 21 

genetic and environmental influences on the trait are independent - the correlation 22 

between MDD and reported trauma exposure violates this underlying assumption 18–23 

20. Furthermore, the sample is not divided by an purely environmental trait, because 24 
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trauma exposure is itself heritable. The impact of these concerns on estimates of the 1 

SNP heritability in each group is not intuitive. 2 

Therefore, we performed a simulation study of SNP-level data in line with 3 

previous work 21. In this simulation, we assumed the phenotypic link between MDD 4 

and reported trauma exposure was attributable to sharing of genetic and 5 

environmental effects without interaction (that is, gene-environment correlation 6 

alone). The prevalence of MDD was set at 𝐾 = 0.28. The remaining simulation 7 

parameters were aligned with the empirical observations from the study: the 8 

prevalence of reported trauma exposure was set at  𝐾 = 0.32 (assuming accurate 9 

sampling of reported trauma exposure from the population of cases and of controls), 10 

while the liability-scale heritabilities were set at ℎ , = 0.20 and ℎ , = 0.24. BOLT-11 

LMM was used to empirically estimate the genetic correlation between MDD and 12 

reported trauma exposure at 푟 = 0.76 and the environmental correlation at 푟 = 0.31. 13 

These values were used as the first parameterization (parametrization #1) and fixed 14 

the phenotypic OR between MDD and reported trauma exposure at 3.1. The 15 

empirical OR, however, was estimated at 5.2. Therefore, a second parameterization 16 

was simulated by increasing 푟 = 0.5 and thereby fixing the phenotypic OR at 5.2 17 

(parametrization #2). For these parameterizations, 1,000 SNPs were simulated with 18 

random minor allele frequencies (MAF) uniformly distributed between 0.05 and 0.5. 19 

The SNP-effects for MDD (훽 ) and reported trauma exposure (훽 ) were drawn 20 

from a bivariate normal distribution with variances ℎ , = 0.20 and ℎ , = 0.24 and 21 

covariance 푟 ℎ , ℎ , .  An individual was simulated by randomly assigning 22 

genotypes with probabilities in line with the MAFs. The genetic value for MDD was 23 

estimated as 𝑔 = ∑ 훽 , (𝑔𝑒푛표푡푦푝𝑒 − 2𝑀𝐴𝐹 )/(2𝑀𝐴𝐹 (1 − 𝑀𝐴𝐹 )) with 푖 24 



 
 

11 
 

iterating over the 1,000 SNPs, and the genetic values for reported trauma exposure 1 

were estimated analogously. The environmental values for MDD (𝑒 ) and reported 2 

trauma exposure (𝑒 ) were drawn from a bivariate normal distribution with variances 3 

1 − ℎ ,  and 1 − ℎ ,  and covariance 푟 (1 − ℎ , )(1 − ℎ , ) . The values on the 4 

liability scale were subsequently estimated as 푙 = 𝑔 + 𝑒  and 푙 = 𝑔 + 𝑒 . 5 

MDD was set at 1 when 푙 ≥ 휙 (1 − 𝐾 ) and 0 otherwise, while reported 6 

trauma exposure was set 1 when 푙 ≥ 휙 (1 − 𝐾 )  and 0 otherwise (휙  is the 7 

standard normal cumulative distribution function). For both parametrizations, 8 

individuals were simulated one-by-one until we had collected 4,000 of each of: cases 9 

reporting trauma exposure (MDD1T1), controls reporting trauma exposure (MDD0T1), 10 

cases not reporting trauma exposure (MDD1T0), and controls not reporting trauma 11 

exposure (MDD0T0). The data were merged for MDD1T1-MDD0T1 and MDD1T0-12 

MDD0T0. Subsequently, cross-product Haseman Elston regression was applied to 13 

estimate the heritability of MDD in individuals reporting trauma exposure and in 14 

individuals not reporting trauma exposure respectively. The observed scale 15 

heritabilities were converted to the liability scale based on a prevalence of MDD in 16 

individuals reporting trauma exposure of 𝐾 | = 0.45 and in individuals not 17 

reporting trauma exposure of 𝐾 | = 0.20, as follows from 𝐾 = 0.28 and 𝐾 =18 

0.32 with 𝑂𝑅 = 3.1 (i.e. parametrization #1) 22. For parametrization #2, these 19 

respective prevalences were 𝐾 | = 0.52 and 𝐾 | = 0.17 (as follows from 20 

𝐾 = 0.28 and 𝐾 = 0.32 with 𝑂𝑅 = 5.2). For both parameterizations, simulations 21 

were repeated 100 times. 22 

With these simulations an average liability scale heritability of MDD 23 

ℎ , | = 0.148 (SE over 100 iterations of 0.002) was found in individuals 24 
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reporting trauma exposure, and ℎ , | = 0.157 in individuals not reporting trauma 1 

exposure for parameterization #1. For parameterization #2, heritabilities were 2 

estimated as ℎ , | = 0.145 (0.002) and ℎ , | = 0.154 (0.001) respectively. 3 

Thus, the heritability estimates were slightly larger in individuals not reporting trauma 4 

exposure compared to individuals reporting trauma exposure. This contrasts our 5 

empirical findings where the heritability was larger in individuals reporting trauma 6 

exposure compared to individuals not reporting trauma exposure. Thus, these 7 

simulations suggest that our empirical findings were not directly attributable to bias 8 

from the heritable component of reported trauma exposure, nor by the transformation 9 

of the observed scale heritability to the liability scale. At the same time, however, we 10 

would like to emphasize that we did not address different sources of potential bias 11 

from other genetic architectures than those simulated, from intrinsic challenges of 12 

heritability estimation from case-control data 21,23, or from potential collider bias 13 

resulting from selection bias 24. 14 

 15 

Comparing two genetic correlations using block jackknife and LD Score 16 

Define four phenotypes: A, B, C, and D. We wished to compare the genetic 17 

correlation of A and B to the genetic correlation of C and D. Global estimates of 18 

these correlations, denoted 푟(𝐴, 𝐵) and 푟(𝐶, 𝐷), can be computed using LD Score. 19 

The same software can output jackknife delete values for genetic covariance: 20 

𝐺(𝐴, 𝐵), 𝐺(𝐶, 𝐷), as well as for heritability: 𝐻(𝐴, 𝐵) and 𝐻(𝐶, 𝐷). These jackknife 21 

delete values are estimated by excluding blocks of values (here, number of blocks n 22 

= 200). The n-dimensional vectors 𝐺(𝐴, 𝐵), 𝐺(𝐶, 𝐷), 𝐻(𝐴, 𝐵) and 𝐻(𝐶, 𝐷) can be used 23 

to generate genetic correlation delete values 𝑅(𝐴, 𝐵) and 𝑅(𝐶, 𝐷). The difference 24 

between the global estimates 푟(𝐴, 𝐵) and 푟(𝐶, 𝐷) is 𝑑(𝐴𝐵, 𝐶𝐷) and the difference 25 
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between the vectors 𝑅(𝐴, 𝐵) and 𝑅(𝐶, 𝐷) is 𝐷(𝐴𝐵, 𝐶𝐷). The global genetic correlation 1 

difference 𝑑(𝐴𝐵, 𝐶𝐷) and the delete values 𝐷(𝐴𝐵, 𝐶𝐷) are used to compute jackknife 2 

pseudovalues. The ith pseudovalue is: 3 

 4 

𝑃 (𝐴𝐵, 𝐶𝐷) = 푛 × 𝑑(𝐴𝐵, 𝐶𝐷) − (푛 − 1) ∗ 𝐷 (𝐴𝐵, 𝐶𝐷) 5 

 6 

The mean and variance of the jackknife pseudovalues are: 7 

푚(𝐴𝐵, 𝐶𝐷) =
1
푛 𝑃 (𝐴𝐵, 𝐶𝐷) 8 

푣(𝐴𝐵, 𝐶𝐷) =
1

푛 − 1 (𝑃 (𝐴𝐵, 𝐶𝐷) − 푚(𝐴𝐵, 𝐶𝐷))  9 

The jackknife estimate of the difference between the two correlations m(AB,CD) can 10 

then be compared to test H0 : θ = θ0 (where θ0 = 0 for no difference between genetic 11 

correlations), and a p-value can be derived from the z statistic: 12 

푧(𝐴𝐵, 𝐶𝐷) =
푚(𝐴𝐵, 𝐶𝐷) − 휃
(1/푛) × 푣(𝐴𝐵, 𝐶𝐷)

 13 

 14 

Gene environment interaction analyses (variant level) 15 

 In addition to the analyses described in the main text, we performed 16 

exploratory analyses to determine if the variants with the strongest main effects in 17 

the analyses of MDD and reported trauma exposure (overall and stratified) showed 18 

interaction effects. Specifically, index SNPs with a nominally significant main effect 19 

(p<0.0001) in one or more of the six analyses were tested for SNP-by-reported 20 
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trauma exposure interactions associated with MDD. (Similar analyses were 1 

performed assessing SNP-by-MDD interactions and reported trauma exposure, but 2 

results were effectively identical to those for SNP-by-reported trauma interactions 3 

and are not shown.) Interaction models were calculated in R.3.4.1 11. SNP dosages 4 

were extracted from imputed data using PLINK2.0 14. SNP, reported trauma and 5 

genetic principal components were mean-centred and scaled to have a standard 6 

deviation of 1 (i.e. converted to Z scores). To assess interactions as departure from 7 

multiplicativity, logistic regressions were performed regressing MDD on the main 8 

effect of reported trauma exposure, SNP, covariates (as used in the GWAS), SNP-9 

by-reported trauma exposure interaction terms, SNP-by-covariate interaction terms 10 

and reported trauma exposure-by-covariate interaction terms 25,26. Further analyses 11 

were performed to assess interactions as departure from additivity as above using 12 

linear regressions. SNP-trauma interaction terms were considered experiment-wide 13 

significant if they passed Bonferroni correction for the 1,652 SNPs assessed (p ≈ 14 

3x10-5), and genome-wide significant if p ≤ 5x10-8. 15 

 16 

Supplementary Results 17 

 18 

Sensitivity analyses  19 

Analyses focussed on reported trauma exposure  20 

Individuals reporting trauma exposure differed significantly from those who did 21 

not: they were mostly females, significantly younger, more likely to have a degree, 22 

came from more deprived neighbourhoods, and had higher BMI at recruitment (all p 23 
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< 0.05; Supplementary Table 4). Genome-wide association analyses identified six 1 

significant loci when comparing individuals reporting trauma exposure to those who 2 

did not, which remained significant when assessed with logistic regression 3 

(Supplementary Figures 4-6). These loci have previously been implicated in genetic 4 

studies of a variety of phenotypes, including attention deficit disorder, schizophrenia 5 

and educational attainment, but did not overlap with the locus identified in the MDD 6 

analyses (Supplementary Table 7). No analysis showed evidence of genome-wide 7 

inflation that was attributable to confounding (95% confidence intervals of all 8 

regression intercepts from LD Score heritability estimation overlapped 1; 9 

Supplementary Table 6). The liability-scale SNP-heritability estimate for reported 10 

trauma exposure (24% [22-26%], assuming a population prevalence of 32%, 11 

equivalent to representative sampling from the population in cases and in controls) 12 

was in excess of that for MDD (20%, Z-test p = 0.006).  13 

 Genetic correlations were calculated between all internal phenotypes 14 

(Supplementary Table 8). The genetic correlation between reported trauma exposure 15 

in cases and in controls was high (rg = 0.737 [95% CI: 0.493-0.981]; difference from 16 

0: p = 3.33 x 10-9; difference from 1: p = 0.0349). Genetic correlations of reported 17 

trauma exposure with body composition phenotypes and with educational attainment 18 

were significantly larger in cases than the equivalent correlations in controls 19 

(Supplementary Figure 7; Supplementary Table 9).  20 

 Individuals with higher MDD PRS were more likely to report a trauma 21 

exposure, and a significant additive interaction term was observed from linear 22 

regression - the combined effect of PRS and reported trauma exposure was greater 23 

than the sum of the individual effects (beta > 0, Supplementary Table 10). However, 24 

the multiplicative interaction term was not significant (p > 0.01). Individuals with 25 
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higher BMI risk scores were more likely to be report a trauma exposure, although 1 

this only passed correction for multiple testing in cases. Both the additive (beta > 0) 2 

and the multiplicative (OR > 0) interaction terms were significant, suggesting the 3 

combined risk of MDD from BMI PRS and reported trauma exposure together was 4 

greater than expected from both the sum of the individual risks and from their 5 

product, respectively (OR > 1).  6 

 7 

Covarying for BMI, age, SES and education 8 

Approximately 1% of the cohort did not provide information on one or more of 9 

these variables, resulting in a minor difference in sample size across all analyses 10 

(Supplementary Table 12). 11 

 No additional loci passed genome-wide significance in any analysis. The 12 

locus passing genome-wide significance in the overall MDD analysis, and four of the 13 

six loci from the overall reported trauma exposure analyses, remained significant 14 

when controlling for the additional covariates (Supplementary Table 13). There was 15 

no evidence of confounding introduced by controlling for these additional covariates 16 

(all LD Score intercepts contained 1; Supplementary Table 14). 17 

Estimates of the SNP-heritability of MDD overall (19% [17-21%]) and in  18 

individuals reporting trauma exposure (22% [16-29%]) were attenuated compared to 19 

the overall analysis, but remained constant in those not reporting trauma exposure 20 

(12% [7-16%]; Supplementary Table 14). Despite this, the SNP-heritability of MDD 21 

remained significantly greater in individuals reporting trauma exposure than in those 22 

not reporting trauma exposure (p = 0.01). Similarly, estimates of the SNP-heritability 23 

of reported trauma exposure were attenuated (23% [21-25%]). 24 
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 Genetic correlations with external phenotypes did not differ substantially with 1 

and without the additional covariates in any analysis (all z-test p < 0.05), with the 2 

exception of the correlations with BMI, body fat percentage and fat mass, all of which 3 

were significantly diminished in the overall MDD analysis when the additional 4 

covariates were included (z-test p = 0.01-0.03). The genetic correlation of waist 5 

circumference with MDD  no longer differed significantly between individuals 6 

reporting and not reporting trauma exposure. In the analyses of reported trauma 7 

exposure, genetic correlations with BMI, fat mass, hip circumference and waist-hip 8 

ratio no longer differed significantly between cases and controls. However, the 9 

correlation between reported trauma exposure and total body (less head) bone 10 

mineral density became  significantly larger in  cases compared to  controls 11 

(Supplementary Table 16).   12 

 PRS analyses differed only in analyses involving the BMI PRS. BMI PRS was 13 

no longer associated with MDD or reported trauma exposure in any analysis, and no 14 

interactions including the BMI PRS remained significant after correcting for multiple 15 

testing (Supplementary Table 17).  16 

 17 

Genetic correlations using downsampled cohorts 18 

 Genetic correlation analyses with external phenotypes were rerun using ten 19 

cohorts downsampled such that each group had 9,487 participants (Supplementary 20 

Table 18). Mean average genetic correlations with MDD were attenuated across 21 

most phenotypes when compared to the original results, but these reductions were 22 

not significant in any instance (two-sample z-tests, all p > 0.05). Similarly, differences 23 

in correlations with MDD between individuals reporting trauma exposure and 24 

individuals not reporting trauma exposure were reduced compared to the original 25 
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results, but not significantly so (two-sample z-tests, all p > 0.05). However, due to 1 

this reduction, no differences in genetic correlations with MDD between individuals 2 

reporting and not reporting trauma exposure  remained significant after multiple 3 

testing correction in this downsampled cohort. As such, we conclude that the 4 

differences observed in the genetic correlations with MDD between individuals 5 

reporting and not reporting trauma exposure are robust, but their magnitude is likely 6 

to be increased by the differences in size between the different groups.  7 

 8 

SNP-heritability of MDD using alternative definitions of reported trauma exposure 9 

 We repeated our analyses of SNP-heritability in MDD using alternative 10 

definitions of reported trauma exposure in order to test the robustness of this 11 

principal finding from the main paper. Results did not qualitatively differ from those in 12 

the main paper: for all definitions of reported trauma exposure, the SNP-heritability of 13 

MDD was significantly greater in individuals reporting trauma exposure than in those 14 

not doing so (Supplementary Table 19).  15 

Altering the threshold for including MDD-relevant traumas resulted in a 16 

dosage-like effect, whereby increasing the number of reported traumas required 17 

increased the SNP-heritability of MDD in individuals reporting trauma exposure (21% 18 

to 24% to 28%). However, increasing the threshold reduced the number of 19 

individuals defined as reporting trauma exposure. Consequently, the power 20 

decreased with higher thresholds, as did the significance of the difference in MDD 21 

SNP-heritability between those reporting and not reporting trauma exposure. 22 

Limiting the trauma items considered just to the childhood items altered the 23 

composition of both the group reporting and the group not reporting trauma exposure 24 

(Compare the two previous alternative definitions, in which the composition of the 25 
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group not reporting trauma remained constant.) Although the difference in MDD 1 

SNP-heritability between the trauma-reporting and non-reporting groups was smaller 2 

using this final alternative definition, the greater power of this definition meant that 3 

the difference remained significant. 4 

 5 

SNP environment interaction analyses 6 

 Analyses were performed for the 1,652 index SNPs (p < 0.0001 in at least one 7 

of the six analyses) to assess the association of SNP-trauma interactions with MDD. 8 

Multiplicative interaction effects at experiment-wide significance (p < 3x10-5) were 9 

observed at 78 variants, with the most significant interaction (with rs143276464) 10 

reaching genome-wide significance (p = 2.42x10-9; Supplementary Table 20). In the 11 

case of rs143276464, the probability of MDD increases with each additional minor 12 

allele in individuals reporting trauma exposure, but decreases with each additional 13 

minor allele in those who do not report exposure.  14 

Additive interaction effects at experiment-wide significance (p < 3x10-5) were 15 

observed at 85 variants, although none reached genome-wide significance 16 

(Supplementary Table 20). 31/85 of the interactions with significant additive 17 

interaction effects also showed significant multiplicative interaction effects.  18 

Replication of the observed interactions was sought in a previous analysis of 19 

genetic variant-by-trauma interactions with MDD (N = 3944, 27) and in similar data 20 

from Generation Scotland (N = 629, unpublished). No interaction was significantly 21 

associated in both replication datasets.   22 
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