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The structured life-course modeling approach (SLCMA) is a theory-driven analytical method that empirically
compares multiple prespecified life-course hypotheses characterizing time-dependent exposure-outcome rela-
tionships to determine which theory best fits the observed data. In this study, we performed simulations and
empirical analyses to evaluate the performance of the SLCMA when applied to genomewide DNA methylation
(DNAm). Using simulations (n = 700), we compared 5 statistical inference tests used with SLCMA, assessing
the familywise error rate, statistical power, and confidence interval coverage to determine whether inference
based on these tests was valid in the presence of substantial multiple testing and small effects—2 hallmark
challenges of inference from -omics data. In the empirical analyses (n = 703), we evaluated the time-dependent
relationship between childhood abuse and genomewide DNAm. In simulations, selective inference and the max-
|t|-test performed best: Both controlled the familywise error rate and yielded moderate statistical power. Empirical
analyses using SLCMA revealed time-dependent effects of childhood abuse on DNAm. Our findings show
that SLCMA, applied and interpreted appropriately, can be used in high-throughput settings to examine time-
dependent effects underlying exposure-outcome relationships over the life course. We provide recommendations
for applying the SLCMA in -omics settings and encourage researchers to move beyond analyses of exposed
versus unexposed individuals.

Avon Longitudinal Study of Parents and Children; DNA methylation; life course; -omics; postselection inference;
structured approach

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; ARIES, Accessible Resource for Integrated
Epigenomic Studies; CpG, cytosine-phosphate-guanine; DNAm, DNA methylation; FWER, familywise error rate; LASSO,
least absolute shrinkage and selection operator; SLCMA, structured life-course modeling approach.

Epidemiologists have long been interested in whether
and how exposures incurred over the life course affect later
health outcomes. Guided by theories developed in life-
course epidemiology (Table 1), researchers are moving be-
yond simple comparisons of the presence versus absence of
exposure to characterize time-dependent exposure-outcome
relationships (1). Prior work in life-course epidemiology has
conceptualized timing effects in numerous ways, examin-
ing the roles of the developmental timing of exposure (the
sensitive-period hypothesis), the number of exposure oc-
casions across time (the accumulation-of-risk hypothesis),
proximity in time to exposure (the recency hypothesis), and

change in exposure status across time (the mobility hypoth-
esis). Researchers have adopted this life-course perspective,
uncovering mechanistic insights that have advanced many
subfields of public health and medicine (2–6). Because dif-
ferent life-course hypotheses correspond to distinct theories
of disease etiology, efforts to formally compare competing
hypotheses and identify those best supported by empirical
data are needed to guide prevention and intervention plan-
ning.

To address the need for systematic comparisons of life-
course theories, Mishra et al. (7) introduced the structured
life-course modeling approach (SLCMA). The SLCMA
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Table 1. Commonly Tested Life-Course Theories Characterizing Time-Dependent Relationships Between Exposures and Health Outcomes

Hypothesis Life-Course Theory Definition Encodinga Exampleb

Sensitive period The developmental timing
of exposure X has the
strongest effect on the
outcome at a specific
time point due to
heightened levels of
plasticity or
reprogramming.

Exposure at a particular
time point j(Xj) is
associated with the
outcome.

Xj Abuseperiod 1 (X1) = exposed
(1) vs. unexposed (0) in
time period 1

Accumulation Every additional time point
of exposure affects the
outcome in a dose-
response manner,
independent of the
exposure timing.

The accumulated sum of
the number of
exposure occasions
(A) is linearly
associated with the
outcome.

A = X1 + · · · + Xm Abuseaccumulation (A) = number
of time periods exposed to
abuse (range, 0–6)

Recency More proximal exposures
(those that happen
closer in time to the
measurement of the
outcome) are more
strongly linked to the
outcome than are more
distal exposures.

The weighted sum (R) of
the number of
exposure occasions is
linearly associated
with the outcome
such that the weight
of each exposure is
proportional to the
age at the time of
measurement.

R = X1T1 + · · · + XmTm Abuserecency (R) = abuseperiod 1
exposed (1) vs. unexposed
(0) × (ageperiod 1) + . . . +
abuseperiod 6 exposed (1)
vs. unexposed (0) ×
(ageperiod 6)

Mobility The change in exposure
status between 2 time
periods, rather than the
absolute state at each
individual time point,
affects the outcome.

The unidirectional
change (M+

jk or M−
jk )

between 2
measurement
occasions (from jth to
kth) is associated with
the outcome.

Positive change:
M+

jk = (1 − Xj)Xk
Negative change:

M−
jk = Xj(1 − Xk)

Abusemobility
+, period 1–2

(M+
1,2) = (1 − exposed (1)

in time period 1) × exposed
(1) in time period 2

a Notation is based on the description of hypotheses by Smith et al. (9). Let X1, . . . , Xm be a set of m repeated binary measures of exposure
(0 = unexposed; 1 = exposed) and T1 . . . Tm the corresponding age at the time of measurement. Xj represents the measurement taken on
the jth measurement occasion.

b This column shows examples of how the life-course theories, which were tested in empirical analyses of the epigenomewide structured
life-course modeling approach to examine exposure to physical or sexual abuse in childhood, could be encoded. Notably, the accumulation
models can also be parameterized differently, such as with nonlinear effects (“U-shaped” or “J-shaped” relationships). However, for simplicity,
we provide the simplest definition of accumulation, which is also the most frequently tested.

allows researchers to compare a set of a priori–specified life-
course theories and use goodness-of-fit criteria to determine
which theory is best supported by empirical data. Smith et al.
(8) later extended this approach with an alternative statistical
model selection strategy that uses least-angle regression,
accommodates both binary and continuous exposures (9,
10), and improves the accuracy of selecting the correct
hypothesis. More recently, Madathil et al. (11) proposed a
Bayesian approach to life-course modeling that does not
perform variable selection but rather estimates the posterior
probability corresponding to each theoretical hypothesis
while assessing the relative importance of a series of life-
course theories. Since its inception, the SLCMA has been
applied in a wide range of non-omics epidemiologic studies,
including those examining the time-dependent impacts
of childhood trauma, physical activity, or socioeconomic
position on psychological, metabolic, and disease outcomes

(12–18). Compared with other approaches that consider
alternative classifications of the exposure, the SLCMA is
better positioned to compare competing life-course hypothe-
ses simultaneously. By requiring that life-course hypothe-
ses be specified a priori on the basis of theory, it prevents
post-hoc hypothesis-generation following exploratory anal-
yses. Moreover, its model selection feature allows a struc-
tured assessment of hypotheses without requiring a saturated
model.

The growing availability of high-dimensional biological
and phenotypic data from longitudinal cohort studies has
created new opportunities to assess time-varying exposures
in epigenomics, transcriptomics, metabolomics, and other
-omics settings (19–21). While large cross-sectional -omics
studies have identified associations between biological dif-
ferences and various traits (22), applications of the SLCMA
to longitudinal data and high-dimensional outcomes allow
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researchers to answer more complex questions about dis-
ease mechanisms. For example, Dunn et al. (23) applied
the SLCMA in a longitudinal birth cohort study to model
timing effects of childhood adversity on DNA methylation
(DNAm), which is a widely studied epigenetic mechanism
that could give rise to altered gene expression and pheno-
typic changes. Using the SLCMA, they found that differ-
ences in DNAm were largely explained by age at exposure,
with the first 3 years of life appearing to be a sensitive period
associated with more DNAm differences. Their results also
showed that the SLCMA could identify associations not
identified by an epigenomewide association study of persons
exposed to childhood adversity versus those unexposed (23),
underscoring the importance of alternative exposure classi-
fications.

In this study, we aimed to extend these findings with
methodological contributions that outline the structured life-
course modeling framework and its application in -omics
settings. As discussed in Dunn et al. (23), application of
the SLCMA to -omics data presents unique challenges not
yet systematically investigated. First, it remains unknown
whether theoretical properties of statistical inference, such
as type I error (i.e., the familywise error rate (FWER) in the
presence of multiple testing) or confidence interval cover-
age, are valid in -omics data. Second, it is unclear whether
the SLCMA is sufficiently powered to detect the small
effects commonly found in -omics settings. Third, questions
exist on how to balance decision-making regarding research
evidence, because -omics studies often rely on P values
and accurate statistical inference has become increasingly
important. Moreover, epidemiologists and other researchers
increasingly prioritize other statistical evidence, such as
effect sizes and confidence intervals (24, 25). We therefore
performed simulations and empirical analyses to assess
the performance of the SLCMA when applied to -omics
data. We illustrate how the SLCMA can be applied to
evaluate the time-dependent role of childhood abuse in
genomewide DNAm.

METHODS

Overview of the SLCMA

The SLCMA has been described in detail elsewhere (7, 9,
10). In brief, the SLCMA is a 2-stage method that compares
a set of life-course hypotheses describing the relationship
between exposures assessed over time and some outcome of
interest. In the first stage of the SLCMA, each life-course
hypothesis is encoded into a predictor or set of predictor
variables. Table 1 shows examples of predictors representing
commonly studied life-course hypotheses. A variable selec-
tion procedure is then used to select the subset of predictors
that explains the greatest proportion of outcome variation.
While it is possible for multiple predictors to be selected,
the high dimensionality of the -omics setting makes consid-
eration of simple life-course hypotheses (meaning those in
which the exposure-outcome association is represented by a
single predictor) more feasible. Therefore, in this study, we
focused on statistical inference regarding the single predictor
explaining the greatest variation in the outcome.

In the second stage of the SLCMA, postselection infer-
ence is performed to obtain point estimates and confidence
intervals for the model identified in the first stage. Postse-
lection inference methods are used to derive unbiased test
statistics because they account for the multiple testing that
occurs when comparing multiple hypotheses (meaning the
multiple testing occurring at the first stage, instead of the
number of outcomes examined), as the SLCMA iteratively
works to select the variable with the strongest association
with the outcome. Four inference methods that account for
this “selective nature” are 1) Bonferroni correction, 2) the
max-|t|-test (26), 3) the covariance test (27, 28), and 4) selec-
tive inference (29, 30). These approaches are described in
detail in Web Appendix 1 and Web Table 3 (available online
at https://doi.org/10.1093/aje/kwaa246).

Simulation analyses

We conducted simulations to examine the performance of
these 4 postselection inference methods as compared with
a naive calculation (summarized in Table 2). To build these
simulations in the context of real-world applications, we
modeled the simulation strategy based on the genomewide
SLCMA study performed by Dunn et al. (23). We evaluated
each postselection inference method with respect to 3 statis-
tical properties: the FWER (the probability of making 1 or
more false discoveries out of multiple tests), statistical power
(the probability of correctly selecting the predictor with a
true association with the outcome), and confidence interval
coverage (the probability that a 95% confidence interval
contains the true effect estimate). Assessing these properties
enabled us to determine whether inference based on these
tests was valid in the presence of multiple testing and small
effect sizes, which are 2 hallmarks of high-dimensional
data. Mathematical definitions of the test statistics and the
procedure for constructing confidence intervals, as well as
example R code, are included in Web Appendices 1 and 2
and are available on GitHub (31). All postselection inference
methods, including the naive calculations, involved multiple
testing correction for the number of cytosine-phosphate-
guanine (CpG) sites tested using a Bonferroni correction
(i.e., the P value threshold was P < 1 ×10−7).

Setup of simulations

We considered 2 scenarios, which differed in terms of the
simulated outcome. In both scenarios, we simulated exposure
to childhood sexual or physical abuse based on empirical
data collected during 1991–2000 in the Avon Longitudinal
Study of Parents and Children (ALSPAC), a population-
based study of an English birth cohort (32–34). Pregnant
women with estimated delivery dates between April 1991
and December 1992 were invited to be part of ALSPAC. We
analyzed data from an ALSPAC subsample, the Accessible
Resource for Integrated Epigenomic Studies (ARIES). We
set our sample size to 700 to be consistent with ARIES.
Simulations were based on 485,000 tests corresponding to
an analysis of Illumina Infinium HumanMethylation450K
BeadChip data (Illumina, Inc., San Diego, California). In
scenario 1, the outcome (i.e., DNAm) was simulated from
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Table 2. Setup of a Simulation Study Assessing the Performance of 5 Statistical Inference Tests Used With the
Structured Life-Course Modeling Approacha

Simulation Parameter

Under the Null (FWER) Outcome No. of Tests

Normal outcomes y ∼ N (0, 1) 485,000

Empirical outcomes Resampled DNAm values 485,000

Under the Alternative
(Power and CI Coverage)

Outcome Effect Sizeb

Normal outcomes Simulated normal variables associated with
the first predictor (earliest sensitive period)

R2: 0.01–0.1

Empirical outcomes Simulated β variables associated with the
first predictor (earliest sensitive period)

�DNAm : 0.05–0.5

Abbreviations: CI, confidence interval; DNAm, DNA methylation; FWER, familywise error rate.
a The table shows 2 different approaches to simulations of life-course modeling in the -omics context under

the null and alternative settings: To assess the FWER, we simulated the exposures and outcomes to have no
association with each other (i.e., under the null hypothesis) and ran a single simulation of 485,000 tests to examine
the distributions of observed P values as compared with the expected distribution. To assess statistical power and
CI coverage under the alternative hypothesis, we ran 2,000 simulation experiments to allow the CI of the assessed
metrics (i.e., power and CI coverage) to have a radius (i.e., margin of error) of 1%, setting α to 5%. The 2 metrics
of effect sizes were different with normal versus empirical outcomes because of the difference in the underlying
data-generating processes. The sample size was set to n = 700 in all simulations based on the sample size of the
empirical study. For all simulation analyses, the predictors were simulated on the basis of exposure to childhood
abuse from the Avon Longitudinal Study of Parents and Children (England, 1991–2000). The analyses included 7
variables encoding sensitive period, accumulation, and recency hypotheses.

b R2: variance of the outcome explained by the selected predictor; �DNAm: difference in average DNAm levels
between exposed and unexposed individuals.

a normal distribution. In scenario 2, we resampled the out-
comes under the null to more closely resemble “β” values,
which represent the proportion of cells in which the cytosine
at the locus is methylated and range from 0 to 1. To assess
statistical power and confidence interval coverage, we sim-
ulated the outcome from a beta distribution, as proposed by
Tsai and Bell (32). In both scenarios, the effect sizes were
selected to illustrate a wide range of statistical power based
on previous epigenomewide association studies examining
different exposures (33, 34).

To assess model misspecification, we also conducted sim-
ulations in which 1) the outcome variable was correlated
with a variable encoding an alternative hypothesis (ever
exposed vs. never exposed) not included in the prespeci-
fied set of hypotheses tested and 2) the outcome variable
was correlated with 2 predictors (a compound life-course
hypothesis). We also varied the sample size to investigate
its effect on statistical power.

Full details of the simulations are provided in Web Ap-
pendix 1.

Measurement of power and confidence interval
coverage

Conceptually, bias might arise from the SLCMA analysis
in 2 ways. First, at the first stage, the model most supported

by the sample data may not be the model most supported in
the population. At the second stage, even if the model has
been correctly selected, inference based on that model may
be biased. In our simulations, we considered both uncertain-
ties residing in model selection and inference: Power was
calculated as the percentage of times that the first (variable
selection) stage correctly selected the model and the sec-
ond (inference) stage identified it as a below-threshold hit.
Similarly, confidence interval coverage was calculated as the
percentage of times that the first stage correctly selected the
model and the confidence interval contained the true value.
Alternatively, if the first stage selected the wrong model but
the confidence interval contained 0, we considered that the
true effect (since there should be no effect) was captured by
the confidence interval.

Empirical analyses

To illustrate how the SLCMA and the different corre-
sponding postselection inference methods work in practice,
we reanalyzed the data used by Dunn et al. (23). Briefly, we
compared the effects of sensitive period, accumulation, and
recency hypotheses for the associations between exposure
to sexual or physical abuse and genomewide DNAm at age
7 years among ALSPAC participants (n = 703). Sample
characteristics and adversity measures are described in Web
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Table 3. Statistical Properties of Postselection Inference Methods (Main Findings) in Simulated Epigenomewide Analyses of the Time-
Dependent Relationship Between Childhood Abuse and DNA Methylation (n = 700)a

Method
FWER

(Figures 1 and 2)
Statistical Power

(Figure 3)
CI Coverage
(Figure 4)

Software Availability

Computation Time
for an

Epigenomewide
Analysisb

Naive calculation Inf lated P values
and FWER

Biased due to
inf lated FWER

Lower-than-expected
coverage when effect
size is small (9)

Widely available Fast (24 minutes)

Bonferroni
correction

Controlled at any
level

Comparable Overly conservative
(i.e., above expected
coverage)

Widely available Fast (24 minutes)

Max-|t|-test Controlled at any
level

Comparable Lower-than-expected
coverage when effect
size is small

R code provided in Web
Appendix 2

Slow (11 hours and
51 minutes)

Covariance test Inf lated P values
and FWER

Biased due to
inf lated FWER

Expected coverage (9);
interval not
necessarily
contiguous

R package archived (28) Moderate (1 hour
and 19 minutes)

Selective
inference

Controlled at any
level

Comparable Expected coverage R package available
(30); possible to
implement generalized
linear models as well

Slow (14 hours and
13 minutes)

Abbreviations: CI, confidence interval; FWER, familywise error rate.
a Simulations were based on data obtained from the Avon Longitudinal Study of Parents and Children (England, 1991–2000).
b Computation time was based on analyses running under R 3.4.0 (R Foundation for Statistical Computing, Vienna, Austria) using a high-

performance computer cluster with 8 GB of random access memory and a maximum of 6 central processing unit cores allotted.

Appendix 3. Building from that study, which used only the
covariance test, we additionally applied the other postselec-
tion inference methods summarized above.

The most widely used covariate adjustment strategy in the
SLCMA is to regress the exposures on the covariates and
enter the residuals into variable selection, which decreases
the likelihood that observed associations are due to measured
confounders. We also tested a new method for covariate
adjustment that could be used alongside any postselection
inference method. Based on the Frisch-Waugh-Lovell theo-
rem, this method also regresses the outcome on covariates
and enters the residuals into the model selection procedure
(35–37). A thorough description of this method and the full
list of covariates are available in Web Appendix 1. Notably,
the SLCMA requires a common set of confounders to be
prespecified for all hypotheses; thus, bias may arise from
time-varying or hypothesis-dependent confounding.

RESULTS

Simulation analyses

Table 3 summarizes the main findings from the simulation
analyses regarding the statistical properties and implemen-
tation of the assessed methods.

Familywise error rate

Because of the high computational burden of genomewide
association studies, we illustrated FWER control of each

inference test using a single simulation with m = 485,000
tests. As Figures 1 and 2 show, when compared against the
expected P-value distribution under the null hypothesis, the
P values obtained from naive calculations appeared to be
too liberal in both scenarios, as suggested by the systematic
upward departure from the diagonal line. P values from
the covariance test were also smaller than expected across
scenarios.

With normally distributed outcomes in scenario 1, the
P values from the Bonferroni correction, the max-|t|-test,
and the selective inference method followed the expected
distributions closely (Figure 1). With empirical DNAm out-
comes in scenario 2, P values from the 3 methods seemed
conservative (Figure 2). Transforming the DNAm (β) values
to M values did not affect the results (Web Figure 1). To-
gether, these findings suggest that 3 methods adequately
controlled the FWER: Bonferroni correction, the max-|t|-
test, and the selective inference method. Web Appendix 1
and Web Table 4 show estimates of FWER obtained from
repeated simulation experiments when the number of tests
ranged from m = 1 to m = 1,000.

Statistical power and confidence interval coverage

We assessed the statistical power of the 3 methods that
adequately controlled FWER. We did not evaluate the per-
formance of the covariance test or naive calculation, as these
methods would have their statistical power unfairly inflated
by their tendency to fail to reject the null hypothesis.

Am J Epidemiol. 2021;190(6):1101–1112
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Figure 1. Q-Q plots comparing the expected P values with the observed P values simulated under the null for naive calculations and 4
postselection inference methods (n = 700) with normal outcomes, where the outcome variables were simulated to follow a normal distribution
(scenario 1). A) Naive calculations; B) covariance test (27); C) selective inference (29); D) max-|t|-test (26); E) Bonferroni correction. Simulations
were based on data obtained from the Avon Longitudinal Study of Parents and Children (England, 1991–2000).

Results suggested there was very little difference in sta-
tistical power between the 3 methods (Figure 3); they all
had ideal statistical power (over 80%) when the effects were
moderate to large (R2 > 0.06 in scenario 1; �DNAm > 0.25
in scenario 2). With normal outcomes, selective inference
achieved ideal confidence interval coverage (around 95%)
across all effect sizes with sample size n = 700; the max-
|t|-test had slightly lower coverage when the effect size was
small (R2 < 0.03). With outcomes simulated from beta
distributions, the confidence interval coverage probabilities
were below the desired level (95%) when the between-group
difference (�DNAm) was below 0.3, though they exceeded
95% as the effect size increased. Bonferroni-corrected con-
fidence intervals were overly conservative across effect sizes
and scenarios, as expected (Figure 4).

Robustness to model misspecification

If none of the predictors represent the true underlying life-
course hypothesis, a misspecified model may be selected. In
our simulations of this case, we found that the accumulation
or recency model was often selected, because these models
were highly correlated with the true predictor—ever being

exposed versus never being exposed (raccumulation = 0.89,
rrecency = 0.82). However, the power was reduced in com-
parison with a correctly specified model (Web Figure 2).
If the true hypothesis is represented by 2 or more pre-
dictors (i.e., a compound hypothesis), the power to select 1 of
these predictors may be diminished. In our simulations, the
power to select 1 predictor was lower for selective inference
(Figure 5). However, selective inference is the only method
available for postselection inference on the second predictor
that does not inflate the FWER. Statistical power increased
with sample size for all methods considered (Web Figure 3).

Empirical analyses

Using the covariance test, Dunn et al. (23) identified 5
CpG sites in ALSPAC that showed differential methylation
profiles at age 7 years following exposure to physical or
sexual abuse in childhood; the “sensitive period” model
was the selected life-course theory for these 5 sites. We
performed the genomewide SLCMA analyses using 2 other
postselection inference methods that showed no inflation
in FWER and desired confidence interval coverage: the
max-|t|-test and the selective inference method. Results are

Am J Epidemiol. 2021;190(6):1101–1112
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Figure 2. Q-Q plots comparing the expected P values with the observed P values simulated under the null for naive calculations and
4 postselection inference methods (n = 700) with empirical outcomes, where the outcome variables were resampled from observed DNA
methylation values (scenario 2). A) Naive calculations; B) covariance test (27); C) selective inference (29); D) max-|t|-test (26); E) Bonferroni
correction. Simulations were based on data obtained from the Avon Longitudinal Study of Parents and Children (England, 1991–2000).

shown in Web Table 1. While neither method identified
any CpG site as significantly associated using a stringent
Bonferroni-corrected P value threshold of P < 1 ×10−7, the
CpG site with the smallest P value from the covariance test
(cg06430102) remained the CpG with the smallest P value
(out of the 485,000 CpG sites tested) for the 2 alternative
methods (Web Table 1). The confidence intervals calcu-
lated on the basis of the covariance test, selective inference,
and the max-|t|-test substantially overlapped (Figure 6; Web
Table 1). On a genomewide level, concordance between
the liberal covariance test and the recommended selective
inference method was high, implying that both methods
agreed on the loci that had the strongest associations with
exposure (Web Table 2).

After we applied the Frisch-Waugh-Lovell theorem to ad-
ditionally adjust for covariates, the P values decreased at all
5 loci (Web Figure 4), suggesting that the approach improved
statistical power while retaining control for confounding
(Web Figure 5).

DISCUSSION

As the availability of longitudinal biological and pheno-
typic data grows in the era of “big data,” combining -omics

technologies with rigorous epidemiologic methods can re-
veal critical new knowledge about biological mechanisms
(38–40). Specifically, methods from life-course epidemiol-
ogy can be translated to “harness the ‘omics’ revolution”
(2, p. 984) and provide insights into how exposures become
biologically embedded. We showed that, under a set of
untestable assumptions, one such method—the SLCMA—
can be used to directly compare life-course theories and
can be scaled up to answer nuanced questions about time-
dependent exposure-omics relationships. For example, if an
early childhood sensitive-period hypothesis was selected for
a locus known to be implicated in circadian rhythms, this
finding could point to ways in which the biological clock is
influenced by exposures during periods of heightened plas-
ticity. If the accumulation hypothesis was selected for most
of the loci implicated in inflammation, this finding could
suggest dose-response relationships between the exposure
and inflammatory responses.

Importantly, not all SLCMA methods for statistical infer-
ence are suitable in high-throughput applications. Our find-
ings recommend the selective inference method and the
max-|t|-test for postselection inference in -omics applica-
tions. Our simulations also showed that statistical power to
detect effects depended on effect size but not necessarily
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Figure 3. Estimated statistical power in simulated epigenomewide
analyses of the time-dependent relationship between childhood
abuse and DNA methylation (n = 700), with varying effect sizes.
A) Normal outcomes; B) beta-distributed outcomes. Technical details
about selective inference (29) and the max-|t|-test (26) are provided
in Web Appendix 1. Simulations were based on data obtained from
the Avon Longitudinal Study of Parents and Children (England, 1991–
2000). Bars, 95% confidence intervals. DNAm, DNA methylation.

on the postselection inference method used. When deciding
between these 2 inference methods, researchers will need
to consider several factors, including analytical goals and
study-specific contexts, as both methods have strengths and
limitations in these areas (Web Appendix 1). The simulation
analyses highlight the value of using simulations in scientific
research (41, 42), especially when theoretical assumptions
may be violated in a new-application setting.

The empirical example presented in this paper extended
the analyses performed by Dunn et al. (23), using 1 of the
exposures and the same DNAm data (Web Appendix 3).
However, these analyses differed by considering 2 alterna-
tive postselection inference methods (selective inference and
the max-|t|-test) in the simulations. Comparing the covari-
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Figure 4. Estimated confidence interval (CI) coverage probability in
simulated epigenomewide analyses of the time-dependent relation-
ship between childhood abuse and DNA methylation (n = 700), with
varying effect sizes. The gray dashed line corresponds to the pre-
specified coverage probability (95%). A) Normal outcomes; B) beta-
distributed outcomes.Technical details about selective inference (29)
and the max-|t|-test (26) are provided in Web Appendix 1. Simulations
were based on data obtained from the Avon Longitudinal Study of
Parents and Children (England, 1991–2000). Bars, 95% CIs. DNAm,
DNA methylation.

ance test with these 2 methods, we showed that statistical
significance based on P values may differ across methods.
The main reason for the discordance between the max-|t|-
test and the 2 least absolute shrinkage and selection operator
(LASSO)-based tests is that the max-|t|-test considers only
the first predictor selected, whereas the selected inference
is based on LASSO models that also consider subsequent
predictors. Researchers should assess P values in parallel
with effect estimates and confidence intervals, as decision
rules of significance based on P values of 1 method may
be biased due to inflation or overcorrection. Triangulating
evidence from multiple sources and methods may suggest
directions for future replication (43). For example, a CpG
that was identified as the top site by multiple methods and
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Figure 5. Estimated statistical power in simulated epigenomewide
analyses of the time-dependent relationship between childhood
abuse and DNA methylation (n = 700), with varying effect sizes,
when the true causal relationship was represented by 2 hypotheses
working in combination. A) Statistical power of selection of the first
hypothesis (n = 700), when the true hypothesis is a compound
hypothesis; B) statistical power of selection of the second hypothesis
(n = 700), when the true hypothesis is a compound hypothesis.
Technical details about selective inference (29) and the max-|t|-test
(26) are provided in Web Appendix 1.Simulations were based on data
obtained from the Avon Longitudinal Study of Parents and Children
(England, 1991–2000). Bars, 95% confidence intervals.

showed substantial changes in methylation levels between
exposed and unexposed individuals may be more likely
to capture effects of the exposure and worth pursuing in
experimental validation.

Like any statistical method aspiring to address causal
questions, the SLCMA relies on the usual assumptions
that the model is correctly specified and that there is no
unmeasured confounding (44). In simulations, we showed
that when the model is misspecified, the SLCMA will iden-
tify hypothesized models with predictors that are correlated
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Figure 6. Overlap between confidence intervals based on the
covariance test, selective inference, and the max-|t|-test in the empir-
ical example examining the time-dependent relationship between
childhood abuse and genomewide DNA methylation, showing the
top 5 loci. Technical details about the covariance test (27), selec-
tive inference (29), and the max-|t|-test (26) are provided in Web
Appendix 1. Simulations were based on data obtained from the Avon
Longitudinal Study of Parents and Children (England, 1991–2000).
Bars, 95% confidence intervals. CpG, cytosine-phosphate-guanine.

with the true model’s predictors, but with reduced power.
Therefore, SLCMA users must recognize that the selected
hypothesis simply explains the most variation out of the
(combinations of) candidate hypotheses considered, and
there may be another (or nontested) theoretical model that
explains more variation. Thus, careful formulation of the
hypotheses is critical to capture the most plausible causal
relationship based on prior literature or reasoning; con-
sideration of alternative hypotheses (beyond those already
selected) is also needed as research evidence grows. We
would also emphasize that the selection of life-course
models is based both on proper specification of the relevant
hypothesis and on the set of candidate hypotheses included.
For example, in our set of candidate hypotheses, we con-
sidered 1 sensitive period per time point when the exposure
was measured. This approach may be inappropriate when the
measurements are assessed close together in time: For exam-
ple, for some exposure-outcome pairs, we might not claim
to distinguish a sensitive period at 1.5 years from one at 2.5
years. In such cases, we recommend possibly condensing
measurements into longer sensitive periods, taking the aver-
age exposure over all measurements in a time period defined
by prior literature or reasoning. Such an approach increases
the statistical power of variable selection procedures by
reducing the number of and correlation between predictors.

The SLCMA has some limitations beyond the usual
assumptions: In the current study, we assumed that the true
hypothesis was represented by a single predictor (i.e., a
simple hypothesis). Identifying more complicated exposure-
outcome relationships in -omics settings may be of interest
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but will require large sample sizes to achieve sufficient
power. Moreover, the SLCMA currently does not accom-
modate time-varying confounding. It also does not allow for
a different set of confounders for each hypothesis. In the
empirical analyses, we tried to include a comprehensive
set of baseline covariates based on prior literature that
may be related to both childhood abuse and epigenetic
changes. In light of these issues, the current results should
be interpreted as suggestive evidence of loci that warrant
future examination and replication in other data sets. Efforts
to incorporate time-varying confounding into the SLCMA,
such as marginal structural models (45, 46), are also needed.

Several other limitations of the current study are notable.
First, although we varied the effect size and compared nor-
mal distributions of the outcome variable with empirical
distributions of the outcome variable, we did not vary the
distribution or correlation of the exposures, because of the
number of possible combinations of these parameters. Thus,
we encourage researchers to perform their own simulations
to better understand the statistical properties of the SLCMA
in their specific research context. Second, we restricted our
analyses to linear-regression–based model selection; a brief
discussion on the possibility of implementing postselection
inference methods for generalized linear models is included
in Web Appendix 1. Third, as suggested by the simula-
tions, a typical longitudinal epigenetic study with a sample
size under 1,000 is probably underpowered to detect small
effects. In particular, when studying psychosocial exposures
such as childhood abuse, we would not expect the exposure
to have a large effect on DNAm at a single locus. For
instance, power would likely be under 50% and confidence
interval coverage may be lower than 95% when the outcome
variation explained is below 5%, which has been common in
previous epigenomewide association studies. One approach
for improving statistical power is to combine data or sum-
mary results from multiple samples and perform a mega-/
meta-analysis; development of methods for meta-analyzing
results from SLCMA analyses is an important goal of future
work. Another approach is to use the Frisch-Waugh-Lovell
theorem for covariate adjustment, which leads to improve-
ment in power, as we have shown in this paper. Fourth,
the current SLCMA framework in the -omics setting does
not restrict or penalize any loci based on their biological
significance. One promising direction of future research is
to leverage functional or regulatory information about the
genomic regions under consideration (47, 48), especially
when developmental stage-specific knowledge is available,
in order to improve power and gain biological insights.

In conclusion, the SLCMA is a useful approach that
brings the life-course perspective into the -omics context.
Compared with an analysis that only categorizes exposure
status as exposed versus unexposed, the SLCMA not only
offers additional mechanistic insights about exposure mech-
anisms but also increases statistical power when the true
underlying exposure-outcome relationship is more nuanced
(23). As a field, epidemiology should move beyond analyses
of the presence versus absence of exposure and make full
use of repeatedly measured phenotypic and -omics data to
generate knowledge that improves human health over the life
course.
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1 Web Appendix 1

This section provides details on the statistical methods examined in the current study.
We introduce the regression setup formally, followed by an overview of two variable selection
procedures and five methods for making statistical inference in the structured life course
modeling approach (SLCMA), which were assessed in the current study. Details on a new
confidence interval calculation for the max-|t|-test are also provided. A summary of the
technical details is provided in Web Table 3 for quick reference.

For a sample of size n, let y be the vector of responses and x1,x2, . . . ,xp be vectors of
p predictors. These are assumed to be centered and standardized such that

∑n
i=1 yi = 0,

and
∑n

i=1 xij = 0 and
∑n

i=1 x
2
ij = 1 for all j = 1, . . . , p. The response y is assumed to be a

realization of the random vector generated by the model

Y = Xβ + ε, (1)

where X = (x1 · · ·xp) and ε ∼ N(0, σ2I). The predictor that explains the most variation in
the response is the predictor with the largest correlation with the response, i.e. the predictor
that maximizes |xTj y|.

1.1 Variable selection procedures

Two variable selection procedures that find the single predictor that explains the most
variation in the outcome (in their first step) are forward stepwise regression and least an-
gle regression (LARS). We therefore considered post-selection inference methods that were
developed for these two procedures. This section contains a short overview of these two
procedures.

Forward stepwise regression fits a sequence of models with an increasing number of pre-
dictors. At each step, the procedure selects the predictor not already in the model that has
the largest correlation with the residuals obtained from the current model. At the first step,
there are no predictors in the model, the residuals are therefore simply y, and the correlations
with the residuals are contained in r Hence the first-selected predictor maximizes |xTj y|.

LARS [7] is related to the lasso [19]. The lasso estimate β̂ minimizes 1
2 ||y−Xβ||

2
2+λ||β||1

for some fixed positive value of the smoothing parameter λ. For sufficiently large λ we have
β̂ = 0, i.e. the lasso has selected a model with no predictors. As λ decreases the model
selected by the lasso increases in complexity. LARS is a procedure for identifying the sequence
of lasso models and estimates produced as λ decreases. The first step of LARS identifies the
value λ1 below which the lasso selects its first predictor, the second step identifies the value
λ2 below which a second predictor is selected. The predictor selected at λ1 is that which
maximizes |xTj y|, as in forward stepwise regression. This second predictor is not necessarily
the same as that selected in the second step of forward stepwise regression.

For simplicity of notation, we will assume that x1 is the predictor selected in the first step
of both forward stepwise regression and LARS. The model containing only the first-selected
predictor simplifies to

Y = x1β1 + ε. (2)

Note that r1 is the ordinary least squares estimate for the regression coefficient β1 in this
model.
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1.2 Post-selection inference methods

This section gives an overview of methods for calculating P values and confidence intervals
for the regression coefficient of the first-selected predictor.

1.2.1 Näıve calculations

A typical implementation of forward stepwise regression ignores the selective nature of the
procedure. Inference is essentially based on the test statistic for the first selected predictor,
ignoring the fact that this predictor was selected due to its having the largest correlation
with the residuals, which would artificially give it a test statistic larger than that expected
under the null hypothesis.

In the context of the first predictor selected by forward stepwise regression, this näıve
method of inference would involve fitting the simple linear regression model in (2) and testing
the hypothesis H0 : β1 = 0 against a two-sided alternative. If H0 is rejected at the α level
of significance, then the probability of making a type I error will be potentially much larger
than α. This is because the usual hypothesis test assumes that x1 has been selected from
the predictors at random, rather than selected because it has the largest correlation with the
response (and hence largest standardized regression coefficient). For p = 10 and α = 5%, the
probability of a type I error would be approximately 39% using this method [12].

1.2.2 Bonferroni correction

It is possible to control the type I error in the näıve approach by means of a Bonferroni
correction, dividing the significance level α by the number of predictors, p (or equivalently,
multiplying the P value by the number of predictors and capping at 1). The resulting prob-
ability of type I error would be less than α. However, this would be a very conservative
approach, as the Bonferroni correction assumes that the regression coefficients are uncorre-
lated. In practice, this will only occur if the predictors are orthogonal. In the case of general
predictors, Bonferroni correction will result in a loss of statistical power. The methods in the
following sections attempt to control the probability of type I error without loss of statistical
power, by further making use of the correlation between predictors.

1.2.3 Covariance test

Lockhart et al. [12] developed the covariance test as “a significance test for the lasso”. It
provides a P value for the selected variable that takes into account the selective nature of
the sequence of lasso models.

For the first predictor selected by LARS, the null hypothesis considered by the covariance
test is H0 : β = 0, and the test statistic is

λ1(λ1 − λ2)/σ2. (3)

If σ2 is known this test statistic will have, asymptotically, an Exp(1) distribution under the
null hypothesis. Since λ1 does not depend on the correlation between a particular predictor
and the response, but on the maximum correlation between predictor and response, this test
statistic takes into account the fact that LARS has not selected a predictor at random, but
selected the predictor with the largest correlation with the response.
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Lockhart et al. [12] demonstrated the distribution of T1 with an example with n = 100 and
p = 10 orthogonal predictors. The authors claim that, in their example and under the null
hypothesis, the quantiles of T1 were “decently matched” to those of an Exp(1) distribution.

If the variance σ2 is unknown it can be replaced by an estimate. Provided that n > p, the
variance can be estimated by fitting the full linear model (1). When an estimated variance is
used, the covariance test statistic will have, asymptotically, an F(2, n− p) distribution under
the null hypothesis. Further details regarding variance estimation for post-selection inference
is discussed in Reid et al. [15].

The covariance test does not directly yield a confidence interval for the regression coeffi-
cient β1. Smith et al. [18] proposed a method for modifying the usual confidence interval to
account for the selective nature of the model being presented, based on the covariance test P
value. They showed using simulations that 95% confidence intervals calculated this way had
95% coverage in a typical structured approach application. However, the usual confidence
interval and the covariance test P value are not based on a common set of statistics, and as
a result the confidence intervals of Smith et al. [18] and the covariance test P values are
not consistent. That is, the 95% confidence interval may contain 0 even if the P value is
less than 5%, and vice versa. This can cause confusion if, as is typical in many applications,
confidence intervals and P values are displayed side by side in results.

1.2.4 Selective inference

Tibshirani et al. [21] proposed a new set of inference tools applicable to forward stepwise
regression and LARS, which are available in the selectiveInference R package [20]. The
authors identified variable selection procedures that made estimates under polyhedral con-
straints. As a result, P values and confidence intervals are calculated based on a truncated
Gaussian distribution.

For the first step of the variable selection procedure, the standard implementation of
the selectiveInference package calculates a P value pertaining to the null hypothesis
H0 : β1 = 0. The P value is the probability that the estimated regression coefficient would
be more extreme than r1, under H0 and conditional on the fact that x1 is the first-selected
predictor and that the estimated regression coefficient has the same sign as r1. This P value
can be shown to be

1− Φ(λ1/σ)

1− Φ(λ2/σ)
(4)

where Φ is the cumulative distribution function for a standard normal distribution.
In its standard implementation the P values and confidence intervals calculated by the

selectiveInference package are not consistent. The 95% confidence intervals will contain
0 if and only if the corresponding P value is greater than 2.5%, not 5%. The reason for this is
the P value in (4) is effectively that of a one-sided test, due to conditioning on the regression
coefficient having the same sign as r1. Thus a confidence interval would have to be one-sided
to be consistent with the P value in (4).

1.2.5 max-|t|-test

Buja and Brown [4] proposed a hypothesis test for forward selection, based on the largest
t-value of all predictors not yet included in the model at a certain step. We present basic
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details of this hypothesis test at the first step of the procedure, and a novel method for
calculating consistent confidence intervals for the regression coefficient in the first-selected
model.

As the predictors x1,x2, . . . ,xp share a common scale, the t-values in the first step of the
procedure will be proportional to the correlations between the predictors and the response.
Therefore we can use the largest correlation as a test statistic. Let r = XTy be the vector
of observed correlations, and let R = XTY , so that R ∼ N(XTβ, σ2XTX) under model (1).
As we have assumed that x1 is the first predictor selected by LARS and forward selection,
as it has the largest correlation with y, then r1 is the observed value of the test statistic, and
|r1| = maxj |rj |.

We consider the hypothesis H0 : β = 0 versus HA : β 6= 0. The P value for the max-|t|-
test equals

P0

(
|R1| > |r1|

∣∣∣ |R1| = maxj |Rj |
)

= 1− P0

(
−|r1| ≤ R1 ≤ |r1| ∩ · · · ∩ −|r1| ≤ Rp ≤ |r1|

)
. (5)

where P0 refers to the probability under H0.
Hence the P value is the probability that R lies outside a cube of radius |r1|. Under

H0, the distribution of R is N(0, σ2XTX). The probability in (5) can be calculated using
existing software for the multivariate normal distribution if σ2 is known. If σ2 is unknown,
we can estimate it from the residuals of the full linear model as for the covariance test or
selective Inference package and calculate the P value from a multivariate t-distribution with
n− p degrees of freedom.

Having selected the model in (2) we can construct a 95% confidence interval for β1 that is
consistent with the P value in (5). This confidence interval is the set of all β values that would
give a P value not less than 0.05 when testing H0 : β1 = β against a two-sided alternative.
Under the model in (2), we have E(R1) = β1, so a suitable test statistic would be R1 − β. A
95% confidence interval is given by{

β : Pβ

(
|R1 − β| > |r1 − β|

∣∣∣ |R1| = maxj |Rj |
)
≥ 0.05

}
=

{
β : Pβ

(
|R1 − β| ≤ |r1 − β|

∣∣∣ |R1| = maxj |Rj |
)

) ≤ 0.95
}
,

where Pβ refers to the probability under H0 : β1 = β. The limits of this interval must be
found using numerical methods. To calculate whether a certain value of β belongs inside the
interval requires calculation of the form

Pβ

(
R1 ≤ r

∣∣∣ |R1| = maxj Rj

)
=

Pβ
(
R1 ≤ r ∩ |R1| = maxj |Rj |

)
Pβ
(
R1 ≤ ∞∩ |R1| = maxj |Rj |

) (6)

for r = β ± |r1 − β|.
Under H0 we have R ∼ N(XTx1β, σ

2XTX). If σ2 is estimated then a multivariate
t-distribution with n− p degrees of freedom should be used for calculation instead of a mul-
tivariate normal distribution. Existing software for multivariate normal and t distributions
can calculate probabilities over (potentially infinite) cuboid regions. However, probabilities
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of the form encountered in (6) require calculation over non-cuboid regions. A simple linear
transformation allows these probabilities to be calculated using existing software.

The probabilities in (6) can be written as follows

Pβ
(
R1 ≤ r ∩ |R1| = maxj |Rj |

)
=

{
1− Pβ

(
R1 ≥ r ∩ |R1| = maxj |Rj |

)
r ≥ 0

P−β
(
R1 ≥ −r ∩ |R1| = maxj |Rj |

)
r < 0.

We will discuss how to calculate a general probability

P
(
R1 ≥ r ∩ |R1| = maxj |Rj |

∣∣∣R ∼ N(µ,Σ)
)

(7)

for r ≥ 0. Note that

R1 ≥ r ∩ |R1| = maxj |Rj |
= R1 ≥ r ∩ −R1 ≤ R2 ≤ R1 ∩ · · · ∩ −R1 ≤ Rp ≤ R1

and this set of inequalities is equivalent to the intersection of the following set of inequalities:

R1 ≥ r

R1 −R2 ≥ 0

R1 +R2 ≥ 0
... (8)

R1 −Rp ≥ 0

R1 +Rp ≥ 0.

Let C be a 2p− 1× p matrix with

Ci,j =


1 j = 1
−1 i = j even

1 i = j odd
0 otherwise

Then the inequalities in (8) are satisfied by CR ≥ r′ where r′ = (r, 0, . . . , 0)T . As C is a
linear transformation and R has either a multivariate normal or multivariate t distribution,
then R′ = CR will have a multivariate normal or t distribution. Hence the probability in
(7) is equal to

P
(
R′ ≥ r′

∣∣∣R′ ∼ N(Cµ, CΣCT )
)

and this can be calculated using existing software.

1.3 Simulations setup and data generating process

We included a brief description of the simulations setup in the main text. Here we present
full details on the data generating process. We leveraged observed data from the empirical
example such that the simulation analyses closely resembled a real-world example of SLCMA
application in omics.
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1.3.1 Scenario 1: normal outcomes

In the first scenario, the seven exposure variables were resampled from observed data, con-
sisting of five sensitive periods (binary variables taking the value of 0 or 1), accumulation (sum
of all five sensitive periods, ranging from 0 to 5), and recency (a weighted sum, with weights
defined as age at assessment). The jth outcome (i.e., DNA methylation, j = 1, · · · , 485000)
was simulated from a standard normal distribution, yj ∼ N (0, 1). Because DNA methylation
values (’beta’ values) may not following a normal distribution, we considered the conse-
quence of having a non-normally distributed outcome in the second scenario. Considering a
normally distributed outcome was still useful, as it would help illustrate the performance of
the methods when the assumption held.

To assess FWER under the null hypothesis, we ran a single simulation of 485,000 tests
and examined the distributions of observed P values against their expected distribution. To
assess statistical power and CI coverage, we ran simulations in which the outcome variable
was correlated with one of the predictors and then varied the correlation between outcome and
predictor such that the variance explained by the predictor r2 varied from 0.01 to 0.1. When
only the first sensitive period hypothesis, denoted by X1, was simulated to be associated with
the outcome, we generated the jth outcome as follows:

yj = X1,iβj + εij ,where βj =

√
r2

1− r2
, εij ∼ N (0, 1)

1.3.2 Scenario 2: empirical outcomes

We aimed to consider non-normally distributed outcomes that closely resemble observed
DNA methylation values. The simulation of the exposures was identical to the process
described in scenario 1. To assess the FWER under the null hypothesis, we resampled
the real predictors and DNAm values from ALSPAC separately. The resampling breaks the
predictor-outcome link and hence removes any observed association between the two, while
maintaining the empirical distributions of DNAm. In the assessment of statistical power and
confidence interval coverage, outcomes were simulated to follow beta distributions and effect
sizes were parameterized as the difference in mean levels of DNAm between the exposed and
unexposed at the first sensitive period (∆DNAm), ranging from 0.05 to 0.5.

The number of tests and P value threshold were the same as Scenario 1. We additionally
considered a transformation of the DNAm values from beta values (y) to M values equivalent
to M = log2

y
1−y , which are sometimes used to stabilize variance [5].

1.4 Discussion

In addition to the discussion provided in the main text, we would like to highlight a
few technical details that may also influence one’s preference for one post-selection inference
method over another. First of all, the consistency of the confidence interval (CI) and the cor-
responding P value may make the max-|t|-test more favorable. While the selective inference
method provided desired confidence interval coverage, the confidence intervals and P values
calculated are not consistent: the confidence intervals are two-sided but the P value effec-
tively tests a one-sided hypothesis. Tibshirani et al. [21] argued in favor of this inconsistency,
giving the reasons that the one-sided P value would be expected to have more statistical
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power, while practitioners would prefer to report two-sided confidence intervals. We would
further argue that practitioners would prefer to report confidence intervals consistent with
observed P values, given that both are frequently reported side by side. Consistent confidence
intervals can be provided by the max-|t|-test introduced in this paper.

Second, when considering a compound hypothesis in the simulations, we noticed that the
statistical power of the selective inference was reduced. As has been noted by Fan and Ke [8]
and Bühlmann et al. [3], if there is a second predictor with a non-zero regression coefficient,
then λ2 will be closer to λ1 and the covariance test statistic will be smaller than if there were
no such second predictor. We further note that the selective inference P value (4) will be
larger under this scenario. Hence the statistical power of the covariance test and selective
inference method may be severely reduced if another predictor also has a large contribution
to the outcome variation, even when only considering inference regarding the first-selected
predictor. There is no theoretical basis for such a reduction in power when using the max-
|t|-test, which was consistent with our observation in the simulations. We recommend that
practitioners conduct their own simulations to determine statistical power if there is any
uncertainty on this point.

Third, post-selection inference methods are available for generalized linear models. Al-
though implementations of the covariance test were available in the covTest R package [11],
these are no longer recommended by the package authors. The selectiveInference package
can be used for binary or Cox regression [20], but further simulation is required to confirm
its suitability in high-throughput applications. The fact that further Bonferroni correction
did not result in a significant loss of statistical power indicates that this conservative method
could potentially be used if post-selection software is not available for certain nonlinear re-
gression models.

1.5 Estimating family-wise error rate (FWER)

To further investigate the FWER, we performed repeated simulation experiments under a
theoretical scenario. Specifically, we based the setup on the simulations described by Lockhart
et al. [12], who used a simulated example to investigate the distribution of the covariance
test statistic. We ran 2 000 simulation experiments for each set of parameters to allow the
confidence interval of the FWER to have a radius of 1%, setting α to 5%. In each of the 2
000 simulations, we simulated a sample size of n = 100 and p = 10 uncorrelated predictors
with a Gaussian distribution. The response was also generated from a Gaussian distribution.
We set m = 1, as in Lockhart et al. [12], but also investigated values of m =10, 100, or 1
000 to assess how calculations were affected by the number of tests. The residual variance σ2

was considered fixed and known, hence the covariance test statistic was considered against
an Exp(1) distribution, and a multivariate normal distribution was used for the max-|t|-test.

The estimates of FWER for varying numbers of tests performed are presented in Web
Table 4. As predicted by Lockhart et al. [12], the FWER for the näıve method was not
significantly different from 39%, no matter how many tests were performed. In contrast, the
conservative Bonferroni correction (using an individual test significance level of 5/pm%) gave
a FWER that was not significantly different from 5% for all considered values of m. In this
scenario, Bonferroni correction is not overly conservative as the predictors are uncorrelated.
Hence the p tests of regression coefficients that are implicitly considered during variable
selection are independent.
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The selective inference method and the max-|t|-test gave FWER that were not signifi-
cantly different from 5% for all considered values of m. The covariance test gave a FWER
of approximately 5% for m = 1, but for increasing m the FWER increased. For m=1 000
the covariance test FWER was similar to that of the naive method. We took this to indicate
that, below 0.05, the P values generated by the covariance test under the null hypothesis are
smaller than expected.

The conclusions drawn from this set of simulations are consistent with the conclusions
drawn from Figure 1.
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2 Web Appendix 2

The follow R code shows how the P values and the confidence intervals of the post-
selection inference methods compared in this study can be computed in R, where X hypos

is the design matrix, y the outcome, and npred the number of predictors. The code is also
available on GitHub: https://github.com/thedunnlab/simulations

library(lars)

# archived version of the covTest package can be retrieved here:

# https://cran.r-project.org/src/contrib/Archive/covTest/

library(covTest)

library(selectiveInference)

library(mvtnorm)

## X_hypos: a matrix of the predictors

## y: outcome

## npred: number of predictors

## n: sample size

#### functions for confidence interval for the max-|t|-test ---

# Calculates the probability in (5)

Psi <- function(z, p, mu, df, s2, Corr) {

C <- rbind(diag(p),-diag(p))

C <- C[-(p+1),]

C[,1] <- 1

pmvt(lower=c(z, rep(0,2*p-2)), upper=rep(Inf,2*p-1),

delta=as.vector(C %*% mu), df=df, sigma=s2*C %*% Corr %*% t(C), type="shifted")

}

# Calculates the probability in (4)

Pconditional <- function(r, largest, mu, df, s2, Corr) {

# Reorder so that variable in position 1 is the first one selected

p <- length(mu)

mu <- mu[c(largest, (1:p)[-largest])]

Corr <- Corr[c(largest, (1:p)[-largest]),]

Corr <- Corr[,c(largest, (1:p)[-largest])]

# Calculate denominator in (4)

lower.denom <- Psi(0, p, -mu, df, s2, Corr)

upper.denom <- Psi(0, p, mu, df, s2, Corr)

# Calculate numerator in (4), according to page x

if(r >= 0) {

numer <- Psi( r, p, mu, df, s2, Corr)

prob <- 1 - numer / (lower.denom + upper.denom)

} else {

numer <- Psi(-r, p, -mu, df, s2, Corr)

prob <- numer / (lower.denom + upper.denom)
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}

prob

}

Paccept <- function(beta) {

Pconditional(beta+abs(Xty[selection]-beta), selection,

XtX[,selection] * beta, n-7, s^2, XtX) -

Pconditional(beta-abs(Xty[selection]-beta), selection,

XtX[,selection] * beta, n-7, s^2, XtX) - 0.95

}

#### Run SLCMA ----

# Normalize the design matrix

col_mean <- apply(X_hypos, 2, mean)

X_centered <- X_hypos - rep(col_mean, rep(n, npred)) #subtract mean

col_sss <- apply(X_centered, 2, function(x) sqrt(sum(x^2)))

X_normed <- X_centered / rep(col_sss, rep(n, npred)) #divide by sqrt sum squares

Xt <- t(X_normed)

XtX <- Xt %*% X_normed

Xty <- Xt %*% y

y_centered <- y - mean(y)

## select the predictor with the highest correlation

selection <- which.max(abs(Xty))

## fit OLS

coeftable <- summary(lm(y ~ X_normed[,selection]))$coef

## Naive calculations ----

p.naive <- coeftable[2,4]

lower.naive <- coeftable[2,1] + qt(0.025, n-n_hypo)*coeftable[2,2]

upper.naive <- coeftable[2,1] + qt(0.975, n-n_hypo)*coeftable[2,2]

## Naive calculations + Bonferroni correction ----

p.bonf <- ifelse(p.naive*npred <= 1, p.naive*npred, 1)

## Covariance test ----

lasso <- lars(X_hypos, y)

tt <- covTest(lasso,X_hypos,sigma.est=1,y,maxp=2)$results[1,2]

p.covTest <- 1 - pexp(tt, 1)

# Code from Smith et al. (2015)

thep <- p.covTest/2

lower.covTest <- -1

upper.covTest <- 1

if(thep < 0.05) {

lower.covTest <- coeftable[2,1]+qnorm((0.025-thep/2)/(1-thep))*coeftable[2,2]
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upper.covTest <- coeftable[2,1]+qnorm((0.975-thep/2)/(1-thep))*coeftable[2,2]

}

if(lower.covTest <= 0 & upper.covTest >= 0 & thep < 0.975) {

lower.covTest <- coeftable[2,1]+qnorm(0.025/(1-thep))*coeftable[2,2]

upper.covTest <- coeftable[2,1]+qnorm((0.975-thep)/(1-thep))*coeftable[2,2]

}

if(thep >= 0.975) {

lower.covTest <- 0

upper.covTest <- 0

}

## Selective inference ----

larfit <- lar(X_normed, y, maxsteps=3)

inference <- larInf(larfit, type="active", alpha=0.05)

p.sI <- inference$pv[1]

lower.sI <- inference$ci[1,1]

upper.sI <- inference$ci[1,2]

## Max-|t| test ----

absbeta <- abs(Xty[selection])

s <- summary(lm(y_centered ~ X_normed))$sigma

p.maxt <- 1 -

pmvt(lower=-rep(absbeta,npred),

upper= rep(absbeta,npred),

delta= rep(0,npred),

df= n-npred, sigma= s^2 * XtX)

search_middle <- Xty[selection]

search_radius <- 3*s*XtX[selection,selection]

# lower limit

lower.maxt <- uniroot(Paccept,

lower=search_middle-search_radius, upper=search_middle)$root

# upper limit

upper.maxt <- uniroot(Paccept,

lower=search_middle, upper=search_middle+search_radius)$root
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3 Web Appendix 3

3.1 Sample and procedure

The empirical exposure and outcome data used in our simulations came from the Avon
Longitudinal Study of Parents and Children (ALSPAC), a prospective, longitudinal birth
cohort of children born to mothers living in the county of Avon, England (120 miles west
of London) with estimated delivery dates between April 1991 and December 1992 [9, 2].
Approximately 85 percent of eligible pregnant women agreed to participate (N=14,541), and
99% of eligible live births (n=14,062) who were alive at one year of age (n=13,988 children)
were enrolled. Response rates to data collection have been good (75% have completed at
least one follow-up). Informed consent for the use of data collected via questionnaires and
clinics was obtained from participants following the recommendations of the ALSPAC Ethics
and Law Committee at the time. Ethical approval for the study was obtained from the
ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. Consent
for biological samples has been collected in accordance with the Human Tissue Act 2004
[1]. More details are available on the ALSPAC website, including a fully searchable data
dictionary: http://www.bristol.ac.uk/alspac/researchers/our-
data/. The ALSPAC generated blood-based DNAm profiles at 7 years of age as part of
the Accessible Resource for Integrated Epigenomic Studies (ARIES), a subsample of 1018
mother–child pairs from the ALSPAC. The ARIES mother-child pairs were randomly selected
out of those with complete data across at least five waves of data collection [16].

3.2 Measures

We used data capturing the exposure to sexual or physical abuse (by anyone) and con-
structed the following hypotheses: five sensitive periods (at ages 1.5 years, 2.5 years, 3.5
years, 4.75 years, 5.75 years, and 6.75 years), accumulation, and recency. The first sensitive
period hypothesis was set to be the true underlying hypothesis in the power and confidence
interval coverage simulations. The prevalence of the exposure at the six time points ranged
from 2.61% to 3.96%. Exposure to sexual or physical abuse was determined through an item
asking the mother to indicate whether or not the child had been exposed to either sexual or
physical abuse from anyone at each of the six time points listed above. Reports of sexual or
physical abuse were not reported to child welfare agencies. Other available types of exposure
to childhood adversity in ALSPAC are described by Dunn et al. [6].

DNAm was measured at 485,000 CpG dinucleotide sites across the genome using the
Illumina Infinium Human Methylation 450K BeadChip microarray. DNA for this assay was
extracted from peripheral blood leukocytes at age 7. DNAm levels are expressed as a ‘beta’
value, representing the proportion of cells methylated at each interrogated CpG site. Detailed
descriptions of the preprocessing and quality control procedures are provided elsewhere [6, 16].

The covariates included in the empirical analyses were consistent with the adjustment
by Dunn et al. [6]. They were: child sex, child race and/or ethnicity; child birth weight;
maternal age; number of previous pregnancies; sustained maternal smoking during pregnancy;
and parent social class.
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3.3 Adjusting for covariates

While we focused on assessing relationships between exposures capturing life course theo-
ries and omics outcomes in the simulations, the associations are usually confounded by other
factors in practice, such as socioeconomic status or maternal smoking status during preg-
nancy [6]. In previous studies, adjustment had been formerly done by regressing exposures
on the covariates and using the residuals of the exposures in the SLCMA [18].

An alternative method that can be used to adjust for covariates in a linear regression
setting is to apply the Frisch-Waugh-Lovell (FWL) theorem, or partitioned regression [10, 13].
The method has been proven to yield the same regression coefficients and residual variance
as a fully adjusted model [14]. The FWL theorem was first proposed by two econometricians,
Frisch and Waugh [10], to highlight a useful property of ordinary least squares such that
a two-step approach to detrend the independent and dependent variables yields the same
regression coefficients as a fully adjusted regression model with the trend variables included
as covariates. Lovell showed that the adjustment remains true for any nonempty subset of
explanatory variables (i.e., it does not just apply to trend variables) [13]. The proof of this
theorem can be found in several previous publications [10, 13, 14]. It has since been proven
in the context of penalized regression as well, such as the lasso or ridge regression [22].

However, it remained unclear whether this theorem would be applicable to post-selection
inference methods (such as selective inference or the max-|t|-test) and whether additionally
regressing the outcomes on the covariates would result in smaller residual variances and
larger test statistics. Therefore, we assessed the FWER in a similar manner as in scenario 2
presented in the main results, by running one simulation experiment with resampled empirical
outcomes (n=700). As seen in Web Figure 5, the P value distributions were similar to what
we observed without applying the FWL theorem. There was no inflation in the observed P
value distributions.

To evaluate the potential improvement in statistical power, we repeated the empirical
analyses included in the current study using the selective inference method and max-|t|-test,
additionally regressing DNAm values on the confounders. Comparing the P values of the
five top CpG sites obtained from the selective inference method and max-|t|-test before and
after applying the FWL theorem, we found that the P values decreased at all five loci (Web
Figure 4). The P value at cg06430102 exceeded the estimated 450K array-wide threshold
after the additional adjustment [17], suggesting that the approach improved statistical power.

Given the evidence observed here, we recommend applying the FWL theorem and regress
both the exposure variables and the outcome on confounders before subsequent SLCMA
analyses. This approach may effectively increase statistical power and overcome bias due to
confounding.
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4 Web Tables 1 to 4

Web Table 1: Comparison of effect estimates and confidence intervals of the top CpG sites in the empirical analyses, calculated using the covariance
test, selective inference, and max-|t|-test.

CpG First hypothesis
chosen

DNAm in
unexposed
group

DNAm in
exposed
group

Increase in
R2

Effect
estimate

Post-selection
inference
method

P value Lower
95%
CI

Upper
95%
CI

cg01370449 Very early childhood 0.2439 0.3341 0.0297 0.084 Max-|t|-test 1.23E-05 0.0532 0.118
(2.5 years of age) Covariance test 8.87E-08 0.0501 0.1179

Selective inference 8.09E-06 0.0493 0.1183

cg06430102 Very early childhood 0.9257 0.8619 0.0368 -0.058 Max-|t|-test 5.58E-07 -0.0789 -0.0384
(2.5 years of age) Covariance test 1.69E-09 -0.0789 -0.037

Selective inference 5.32E-07 -0.0791 -0.0367

cg19170021 Early childhood 0.7342 0.8275 0.0275 0.0958 Max-|t|-test 5.79E-05 0.0578 0.1374
(4.75 years of age) Covariance test 6.41E-08 0.0542 0.1373

Selective inference 1.47E-05 0.0536 0.1378

cg05072819 Early childhood 0.0401 0.0534 0.0305 0.0141 Max-|t|-test 8.87E-06 0.0089 0.0198
(5.75 years of age) Covariance test 3.49E-08 0.0084 0.0198

Selective inference 5.70E-06 0.0083 0.0199

cg05936516 Middle childhood 0.1279 0.1532 0.0311 0.0255 Max-|t|-test 3.26E-06 0.0164 0.0354
(6.75 years of age) Covariance test 7.47E-08 0.0156 0.0354

selective inference 5.43E-06 0.0153 0.0355
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Web Table 2: Overlap in most strongly associated loci based on results obtained from the covariance test
and the two recommended methods (max-|t|-test and selective inference) in the empirical analyses.

Number of top loci Selective inference Max-|t|-test

10 100% 50%
50 84 % 54%
100 89% 56%
1000 91% 55%
2000 93% 56%
5000 94% 58%

For example, the first line indicates that for the first 10 loci identified by
the covariance test, all of them were also among the top 10 based on the
selective inference results. However, only half of them appeared among the
top 10 identified using the max-t-test.
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Web Table 3: Summary of the most popular statistical inference methods used in the SLCMA to identify the best fitting theoretical model.

Method Model selection procedure Post Selection Inference

Test statistic Strategy to address
multiple testing and
selection

Procedure to derive
confidence intervals

Näıve calculations
Forward stepwise regression
and least angle regression
are equivalent when
considering just the
predictor with the largest
correlation with the
outcome

β̂OLS = xT1 y NA Ordinary least squares (OLS)

Bonferroni correction β̂OLS = xT1 y Bonferroni correction NA

Max-|t|-test r1 = xT1 y where x1 is
the predictor that has
the largest correlation
with the outcome

Condition the test statistic
distribution on it having the
maximal correlation with
the outcome

Linear transformation
of non-cuboid space;
can be calculated
using existing
software

Covariance test λ1(λ1 − λ2)/σ2, where
λ1 and λ2 are the values
of the smoothing
parameters at the first
and second step of
LARS

Condition the test statistic
distribution on it having the
maximal correlation with
the outcome

A modification of the
OLS confidence
intervals using the
corresponding
covariance test pvalues

Selective inference p-value can be shown to
be:

1− Φ(λ1/σ)

1− Φ(λ2/σ)

where Φ is the
cumulative distribution
function for a standard
normal distribution

Conceptualized the
selection as responses
being in a polyhedral set

Inverting the test
statistic
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Web Table 4: Estimated family-wise error rate and corresponding 95% CI in a theoretical scenario, after 2
000 simulation experiments

Number of tests 1 10 100 1000

Näıve calculation 38.6% (36.5-40.8) 38.8% (36.7-40.9) 38.8% (36.7-40.9) 38.1% (36.0-40.3)
Bonferroni correction 4.9%(3.9-5.8) 4.2% (3.4-5.1) 5.3% (4.4-6.3) 5.1% (4.1-6.0)
Covariance test 6.0% (5.0-7.0) 12.1% (10.7-13.5) 22.5% (20.7-24.3) 42.7% (40.5-44.9)
Selective inference 5.1% (4.1-6.0) 5.2% (4.3-6.2) 5.1% (4.1-6.1) 5.1% (4.1-6.0)
Max-|t|-test 5.0% (4.0-5.9) 4.2% (3.4-5.1) 5.3% (4.4-6.3) 5.1% (4.1-6.0)
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5 Web Figures 1 to 5

Web Figure 1: Q-Q plots comparing the expected and observed P values simulated under the null for all five methods with empirical outcomes (N=700),
where the outcome variables were resampled from observed DNAm values and transformed to M-values.
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Web Figure 2: Estimated probability of selecting any hypothesis with a 5% Bonferroni corrected P value
threshold under model misspecification.
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Web Figure 3: Estimated statistical power and corresponding 95% CI in simulated epigenome-wide anal-
yses with increased sample size (n=1400), with varying effect sizes, when the true causal relationship was
represented by two hypotheses working in combination.
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Web Figure 4: Differences in P values of the top CpG sites, before and after applying the FWL theorem,
obtained from the selective inference method and max-|t|-test

The plot shows the change in − log10(p) obtained using the two recommended methods: selective inference
and the max-|t|-test. Open dots represent P values before additionally adjusting for the covariates following
the FWL theorem; solid dots represent P values after the FWL adjustment (i.e., regressing the outcome on
the covariates and analyzing the residuals). The three dashed lines in different colors denote three commonly
used threshold considered in genome-wide DNA methylation studies.
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Web Figure 5: Q-Q plots comparing the expected versus observed P values simulated under the null for
selective inference and max-—t—-test with empirical outcomes (N=700), after applying the Frisch-Waugh-
Lovell theorem to adjust for covariates.
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