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Background: Early-onset depression during childhood and adolescence is associated with a worse course of illness
and outcome than adult onset. However, the genetic factors that influence risk for early-onset depression remain
mostly unknown. Using data collected over 13 years, we examined whether polygenic risk scores (PRS) that capture
genetic risk for depression were associated with depressive symptom trajectories assessed from childhood to
adolescence. Methods: Data came from the Avon Longitudinal Study of Parents and Children, a prospective,
longitudinal birth cohort (analytic sample = 7,308 youth). We analyzed the relationship between genetic suscepti-
bility to depression and three time-dependent measures of depressive symptoms trajectories spanning 4–16.5 years
of age (class, onset, and cumulative burden). Trajectories were constructed using a growth mixture model with
structured residuals. PRS were generated from the summary statistics of a genome-wide association study of
depression risk using data from the Psychiatric Genomics Consortium, UK Biobank, and 23andMe, Inc. We used
MAGMA to identify gene-level associations with these measures. Results: Youth were classified into six classes of
depressive symptom trajectories: high/renitent (27.9% of youth), high/reversing (9.1%), childhood decrease (7.3%),
late childhood peak (3.3%), adolescent spike (2.5%), and minimal symptoms (49.9%). PRS discriminated between
youth in the late childhood peak, high/reversing, and high/renitent classes compared to the minimal symptoms and
childhood decrease classes. No significant associations were detected at the gene level. Conclusions: This study
highlights differences in polygenic loading for depressive symptoms across childhood and adolescence, particularly
among youths with high symptoms in early adolescence, regardless of age-independent patterns. Keywords:
Depression trajectories; longitudinal; polygenic risk scores; development; ALSPAC.

Introduction
Major depressive disorder (MDD) is one of the most
common, costly, and disabling mental disorders,
with lifetime prevalence estimated at 11.7% among
adolescents (Merikangas et al., 2010) and 16.6%
among adults in the United States (Kessler et al.,
2005). Although depression can emerge at any point
in the life course, nearly one third of those who have
depression report a first onset before age 21 (Zisook
et al., 2007). These early-onset cases of depression,
compared with later onset, have been associated
with worse illness course and outcomes in adult-
hood, including increased risk for adult depression
and later physical and mental health comorbidities
(McLaughlin et al., 2012). However, depression is
complex and developmentally heterogenous. Individ-
uals with depression not only have different ages of

first onset, but also show varying patterns of persis-
tence once the disorder begins. Although prior cross-
sectional studies have modeled this heterogeneity to
identify more homogenous subgroups of depression,
such studies are limited because depressive symp-
toms were assessed at a single point in time (Nandi,
Beard, & Galea, 2009).

More recent longitudinal studies have sought to
model this time-dependent heterogeneity in depres-
sive symptoms (and internalizing symptoms more
broadly) by classifying individuals into subgroups
based on their symptom trajectories over time. These
studies have prospectively and repeatedly assessed
depressive symptoms across an average of 3–6 years
of development (Ellis et al., 2017). Most studies have
characterized between three and six primary trajec-
tory classes, which include people with consistently
low symptoms, chronically high symptoms, or
decreases/increases in symptoms during childhood
and adolescence. Importantly, this body of work has
shown that subtyping depression by developmental
trajectory can help identify the factors that shape the
course of depressive symptoms over time.
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Geneticmechanisms in particularmay explain part
of the heterogeneity in depressive symptoms across
development (Cai, Choi, &Fried, 2020). Genome-wide
association studies (GWAS) suggest that common
genetic variation accounts for approximately 9% of
the variance in the heritability of adult depression
(Howard et al., 2019; Wray et al., 2018). Studies in
children have also shown some links between genetic
variation and depressive phenotypes, with a recent
study finding associations between one genetic locus
and depressive symptoms at age 13 in the ALSPAC
cohort (Sallis et al., 2017). However, most GWAShave
focusedonpresenceversusabsenceof lifetimedepres-
sion and/or cross-sectional measures, which do not
account fordepressionheterogeneity (Leeetal.,2013).
Thus, additional studies using longitudinal data are
needed to enhance our understanding of the genetic
predictors of depressive symptoms across time, espe-
cially because prior work has shown that estimates of
depressionheritabilitymay change over time (Bergen,
Gardner, & Kendler, 2007; Nivard et al., 2015).

In addition to longitudinal data, polygenic risk
scores (PRS), which capture the additive effect of
multiple alleles using summary statistics from
GWAS, have been used recently to examine genetic
liability to depression. PRS have been used to assess
the aggregate impact of genetic contributions on
depressive phenotypes at various ages. For example,
PRS of depression have recently been associated
with self- or maternal-reported childhood psy-
chopathologies, such as internalizing symptoms
from age 7 to 16 (Akingbuwa et al., 2020), emotional
problem trajectories from age 4 to 17 (Riglin et al.,
2018), clinically measured depressive symptoms
between age 7 and 18 (Halldorsdottir et al., 2019),
as well as self-reported adolescent depressive symp-
tom trajectories from age 10 to 22 (Kwong et al.,
2019; Rice et al., 2018). Although these studies have
provided important new insights into the genetic
underpinnings of depression, they collectively have
two main limitations. First, most studies focus on
narrower age ranges and few include children
younger than 7 years old. Thus, there has been
limited attention to the earliest manifestations of
depressive symptoms, which is a shortcoming
because some symptoms can emerge as early as
preschool (Whalen, Sylvester, & Luby, 2017).
Accounting for the complete age span when symp-
toms emerge and occur is needed to capture the full
course of depressive symptoms during development
and to identify the factors that drive and shape
symptom trajectories across the life course. Second,
because longitudinal studies have focused almost
exclusively on age-related changes in symptoms,
genetic links to age-independent patterns, such as
changes in symptom length and recurrence fre-
quency across time, are poorly understood. For
example, young people may have characteristic
patterns of responding to positive and/or negative
life events that can influence the chronicity and

recurrence of any given depressive episode (Hawri-
lenko, Masyn, Cerutti, & Dunn, 2020). Efforts to
disentangle biological and environmental sources of
this interindividual variability in depressive symp-
tom patterns are needed.

To address these gaps and determine how poly-
genic factors shape depressive symptom trajectories,
we examined the genetic contributions to depressive
symptoms across a 13-year period (from age 4 to
16.5). To our knowledge, this is the longest time
span examined for depressive (or internalizing)
symptoms across childhood and adolescence. Rec-
ognizing that developmental heterogeneity encom-
passes not only symptom trajectories across time,
but also the age at onset and burden of symptoms,
we modeled the developmental patterns of depres-
sive symptoms using three measures. First, we
assessed classes of depressive symptom trajectories,
constructed using a new form of growth mixture
modeling that includes structured residuals to
account for symptom changes over time (GMM-SR;
Hawrilenko et al., 2020). Second, we modeled the
onset of depressive symptoms at age 4, coinciding
with the earliest time period reported in prior studies
(Whalen et al., 2017). Third, we examined the
cumulative burden of depressive symptoms, reflect-
ing the overall level of depressive symptoms across
childhood and adolescence. We assessed both poly-
genic and gene-specific mechanisms on these three
measures in two ways. We first tested whether our
measures were associated with polygenic risk for
depression, using summary statistics generated
from recent large-scale GWAS of depression (Howard
et al., 2019). We then performed the first genome-
wide, gene-level analysis of longitudinal depressive
phenotypes to determine whether specific genes were
implicated in these associations.

Materials and methods
Cohort and analytic sample

Data came from the Avon Longitudinal Study of Parents and
Children (ALSPAC), a large population-based birth cohort out
of Avon, England, of children followed from before birth
through early adulthood (Boyd et al., 2013; Fraser et al.,
2013) (Appendix S2). The current study’s analytic sample
consisted of 7,308 children who met the following inclusion
criteria: singleton births with genotype data and at least one
measure of depressive symptoms completed between 4 and
16.5 years of age (Figure S1). Compared to the total original
ALSPAC sample, youths in our analytic sample were more
likely to be white, have slightly higher birth weights, and have
mothers who were older, married, and had higher employment,
higher education, and fewer previous pregnancies (Table S1).

Genotyping, quality control, and imputation

Nine thousand nine hundred and twelve youths in the full
ALSPAC cohort were genotyped on the Illumina Human-
Hap550-Quad genotyping platform (Illumina Inc., San Diego,
CA). After quality control, 500,527 directly genotyped SNPs
and 8,082 youths remained, of whom 7,308 (90.4%) were
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included in our analyses, based on the exclusion criteria above
(Figure S1; Appendix S2).

Depressive symptom measures

Depressive symptom scores were derived from the Strengths
and Difficulties Questionnaire (SDQ; Goodman, 1997) and the
Short Mood and Feelings Questionnaire (SMFQ; Angold,
Costello, Messer, & Pickles, 1995), both of which were
completed by caregivers via mail. Briefly, depressive symptoms
were measured with two of the five SDQ subscales, child
emotional problems and peer difficulties, as well as with the
SMFQ in adolescents. Using multiple measures helped ensure
that the most developmentally relevant depressive symptoms
were tapped at each age (Graham, Taylor, Olchowski, &
Cumsille, 2006). The SDQ subscales captured ‘internalizing
symptoms’ at seven timepoints: ages 4, 7, 8, 9.5, 11.5, 13, and
16.5 (Goodman, 2001), while the SMFQ assessed depressive
symptoms in adolescents at three timepoints: ages 11.5, 13,
and 16.5 (Angold et al., 1995). We used confirmatory factor
analysis to combine information across all questionnaire items
into a single factor score representing the latent cause of their
shared variability, which we interpreted as depressive symp-
toms (Table S2; Appendix S2) (Hawrilenko et al., 2020; Kline,
2015). Full details of the measurement invariance analyses
can be found in the technical supplement for Hawrilenko et al.
(2020). Factor score estimates of this latent score were used in
the subsequent growth mixture models (Curran et al., 2018).

Depressive symptom trajectories

In a previous analysis, Hawrilenko and colleagues used a novel
form of growth mixture modeling with structured residuals
(GMM-SR) in MPlus (version 8.0) to classify youths into distinct
subgroups using their patterns of depressive symptoms
(Hawrilenko et al., 2020; Muth�en & Muth�en, 2017). The
GMM-SR partitions individual variability in depressive symp-
toms over time into (a) an average level, (b) age-dependent
trajectories, and (c) group-specific, time-anchored patterns of
change. The latter were modeled through the structured
residual, which captured the difference between the observed
depression score and the score predicted by the age-dependent
trajectory at any timepoint. Thus, the residual represented the
influence of unmodeled events, adding an autoregressive
structure to how these unmodeled events related over time.
Positive values represented the degree to which a deviation
from average symptom levels perpetuated across time (renitent
responding), whereas negative values represented the ten-
dency for symptoms to fluctuate above and below an average
level (reversing responding). Importantly, the GMM-SR allowed
us to analyze not only depressive symptom levels as a function
of age (age-dependent patterns), but also how symptom levels
responded to change from unmodeled life events (everything
except age) within and between youths over time.

To characterize depressive symptoms across childhood and
adolescence, we analyzed three time-dependent measures of
depressive symptoms trajectories: (a) trajectory classes; (b)
onset of symptoms; and (c) cumulative burden of symptoms.
The methods used to construct these variables are described
below.

Depressive symptom trajectory classes

Based on work by Hawrilenko et al. (2020), we characterized
six overarching classes of depressive symptom trajectories
within our analytic sample (Figure 1): (a) minimal symptoms
(stable and low symptoms across development), (b) adolescent
spike (low childhood symptoms spiking to high levels in
adolescence), (c) late childhood peak (symptoms increasing
through middle childhood and decreasing over adolescence),

(d) childhood decrease (high symptoms decreasing across
childhood), (e) high/reversing (high symptoms with sharp
oscillations between ages), and (f) high/renitent (high symp-
toms with few oscillations between ages). The model-estimated
proportion of youths assigned to each trajectory class was
49.9% minimal symptoms, 2.5% adolescent spike, 3.3% late
childhood peak, 7.3% childhood decrease, 9.1% high/revers-
ing, and 27.9% high/renitent. Demographics for individuals in
each class can be found in Table S3.

Onset of depressive symptoms

Second, we measured the earliest possible onset of depressive
symptoms, captured by the intercept of each youth’s depres-
sive symptom trajectory at age 4. This intercept corresponded
to baseline depressive symptoms latent score at age 4 for each
individual (values ranged from 0.20 to 1.56, mean = 0.75;
Table S4), where lower values represented less depressive
symptoms. Given that clinically relevant depressive symptoms
can emerge at preschool age (i.e., around age 4), early
manifestations of depression may be more genetically driven
and reflect stronger pre-existing biological vulnerabilities than
symptoms that emerge at later ages (Luby, 2010; Whalen et al.,
2017).

Cumulative burden of depressive symptoms

Third,wemeasured cumulative burdenof depressive symptoms
using the area under the curve (AUC) of the depressive symptom
trajectory (Mills et al., 2018). We calculated the AUC as the
integral of the function describing depressive symptom trajec-
tories, estimated using individual growth factors (intercept,
slope, quadratic, cubic, and quartic terms). Thus, youths with
higher depressive symptoms over developmental time displayed
higher a cumulative burden of symptoms (AUC values ranged
from 0.28 to 2.53, mean = 1.13; Table S4). Of note, this mea-
sure was highly correlated with the onset of depressive symp-
toms (r = .909), suggesting that the two measures likely tap
similar dimensions of depressive symptom trajectories.

Analyses
We performed our analysis in two main stages. All
analyses were adjusted for sex and the top 10
principal components to account for population
stratification.

Polygenic risk score (PRS) analysis

We constructed PRS for depression using the latest
summary statistics from the Psychiatric Genomics
Consortium GWAS of MDD, wave 2 (PGC-MDD2;
43,204 cases; 95,680 controls), UK Biobank
(127,552 cases; 233,763 controls), and 23andMe
(75,607 cases; 231,747 controls) in PLINK v.1.07
(Howard et al., 2019; Purcell et al., 2007)
(Appendix S2). To assess polygenic influences on
depressive symptom trajectory classes, we included
PRS scores as predictors of class membership in
MPlus, using the two-step method to account for
classification uncertainty (Bakk & Kuha, 2018). The
first step estimated the unconditional six-class
GMM-SR in the current analytic sample. In the
second step, the growth model parameters (e.g.,
intercepts, slope terms, autoregressive terms) were
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fixed at the estimates found in step 1, while class
thresholds and covariate effects were freely esti-
mated. We standardized PRS as z-scores so that all
reported odds ratios (OR) could be interpreted as the
effect of moving up or down one standard deviation
of PRS on the odds of class membership. We first
used the Wald omnibus test to assess the relation-
ship between PRS and depressive symptom trajec-
tories. Multinomial logistic regressions were then
used to contrast the model-estimated probability of
assignment between different classes (Hawrilenko
et al., 2020). Since the trajectories represent differ-
ent groups of youths, these pairwise comparisons
allowed us to understand the specific patterns of
depressive symptoms differentiated by PRS. Parallel
to the class-based analysis, we tested the relation-
ship between PRS and depressive symptom onset or
cumulative burden using linear regressions in R
(version 3.6.1). We adjusted all PRS analyses for
multiple comparisons using a false discovery rate
(FDR) threshold of 5% (Benjamini & Hochberg,
1995).

Gene-level analyses

To assess specific genetic influences on trajectory
features,weperformedgenome-wide, gene-level asso-
ciations with our three outcome measures using
regression analyses in MAGMA (version 1.06)(de
Leeuw, Mooij, Heskes, & Posthuma, 2015). For our
gene-based analysis of trajectory classes, we focused
on the two largest and most conceptually different
classes, minimal symptoms and high/renitent.
Because no tools currently exist to account for

measurement error/classification uncertainty inher-
ent to GMM in genome-wide analyses, we usedmodal
class assignment to generate a case/control subset of
youths in these two classes (Appendix S2). Although
this approach may lead to liberal estimates of stan-
dard errors by not accounting for the uncertainty
associated with GMM, point estimates remained
unbiased (Vermunt, 2017). Briefly, each youth
received a probability of assignment to each class,
summing to 100%, and were assigned to the class in
which they had the highest probability (i.e., modal
class). The average probability of assigned class
across all individuals was 76% (standard devia-
tion = 18%; Figure S2). Using this approach, 4,416
youthswere classifiedasminimal symptoms (controls)
and 1,895 youths were classified as high/renitent

(cases). Sensitivity analyses using a higher probabil-
ity threshold or continuous class probabilities for the
high/renitent class can be found in Appendix S2.

Our analyses of depressive symptom onset and
cumulative burden used the continuous variables
described earlier across all youths (N = 7,308). A
significance threshold of p < 2.93e-6 was set to
account for multiple testing of 17,044 genes; a
nominal significance threshold was set at p < 1e-4.

Sensitivity analysis of maternal PRS

Given that depressed mothers may be more likely to
rate their children as depressed, we performed a
sensitivity analysis to determine if our results were
biased by the use of maternal reports for youths’
depressive symptoms. To this end, we included
maternal PRS for depression as predictors of child

Figure 1 Six classes were characterized using latent score analysis across ages 4–16.5 in 7,308 youths of the ALSPAC cohort. The latent
scores were a composite score that captured depressive symptoms measured from the SDQ and SMFQ. Youth with higher scores had more
depressive symptoms at that specific age. The percent of individuals assigned to each trajectory class was based on the model-estimated
proportions. These were slightly different from the modal class proportions used in the MAGMA analysis, as they took into account the
second and third place class assignments for each individual
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depressive symptom trajectories in 5,301 mother–
child pairs (Appendix S2). Since mother and youth
PRS were strongly correlated (r = .52), we expected a
decrease in youth PRS effects when controlling for
maternal PRS.

Results
PRS were associated with depressive symptom
trajectory classes

Our initial analysis revealed a significant relation-
ship between PRS for depression and depressive
symptom trajectories (v2 = 45.8, p < 1e-4; Fig-
ure S3), showing that the probability of class mem-
bership varied across PRS (Figure 2, Figure S4). To
understand which specific patterns within trajecto-
ries drove these results, we examined pairwise
contrasts between each pair of trajectories for a total
of 15 contrasts (Table 1; Figure S5). Four contrasts
showed statistically significant differences following
multiple-test correction (FDR < 0.05). Specifically,
one standard deviation increase in PRS was associ-
ated with increased odds of assignment to the late
childhood peak (OR = 1.30, 95% CI: 1.10–1.54),
high/reversing (OR = 1.23, 95% CI: 1.07–1.41), or
high/renitent classes (OR = 1.28, 95% CI: 1.17–
1.38), as compared to the minimal symptoms class.
Similarly, each one-unit increase in the standardized
PRS was associated with increased odds of being
assigned to the high/renitent class compared to the
childhood decrease class (OR = 1.22, 95% CI: 1.05–
1.42). When accounting for maternal PRS, these
effects decreased an average of 34% (range: 28%–
45%) in statistically significant contrasts (Table S5;
Appendix S2).

PRS were associated with depressive symptom onset
and cumulative burden

We next assessed whether PRS might influence
features of depressive symptom trajectories beyond
class alone. We found that higher PRS were associ-
ated with higher onset depressive symptoms
(p = 2.1e-10, b = .018) and higher overall cumulative
burden of depressive symptoms (p = 4.1e-16,
b = .042) across all youths.

Gene-based analyses revealed nominal associations
with depressive symptom trajectory class, onset, and
cumulative burden

Finally, we attempted to identify specific genes
associated with our three outcome measures. No
genes reached statistical significance at the genome-
wide level (p < 2.93e-6) when comparing youths in
the high/renitent class to those in the minimal
symptoms class, or when modeling onset and cumu-
lative burden of depressive symptoms (Figures S6,
S7, S8, S9; Table S6). However, seven different genes
were nominally associated with depressive symptom
features (GABRA4, LRR1, SIX5, DMPK, DKK1,
SMDT1, DWMD). Of note, SIX5 and DMPK were
nominally associated with both onset and cumula-
tive burden of depressive symptoms.

Discussion
In this study, we examined the role of genetic
contributions in shaping developmental patterns of
depressive symptoms trajectories (class, onset, and
cumulative burden) across a 13-year age range that
spanned childhood and adolescence. Using the

Figure 2 The probability of assignment to depressive symptom trajectory classes was skewed with PRS. The probability of class
membership was calculated from the multinomial logistic regressions of estimated class probability. Negative PRS indicated lower genetic
risk for depression, whereas positive PRS indicated higher risk. All classes showed differences in probability of assignment based on PRS,
except the adolescent spike class [Colour figure can be viewed at wileyonlinelibrary.com]
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GMM-SR, we characterized six independent depres-
sive symptom trajectories, which provided additional
insight into the specific patterns of depressive symp-
toms that may be driven by genetic or environmental
factors (Hawrilenko et al., 2020). Using trajectory
classes, onset, and cumulative burden of depressive
symptoms, we showed that polygenic influences may
shape depressive symptom trajectories across devel-
opment.

Similar to previous studies, our results showed
that genetic liability may best discriminate between
generally high versus low patterns of depressive
symptoms during development (Kwong et al., 2019;
Rice et al., 2018). However, our results extended
beyond this known relationship, showing for the first
time that these associations hold true irrespective of
age-associated patterns of responding (i.e., renitent
and reverse responding). As age-associated patterns
of responding capture how youths respond to life
events, fluctuations in depressive symptoms
between timepoints may reflect coping mechanisms
that are environmentally driven or learned, rather
than genetic (Waugh & Koster, 2015).

Our results also further refined the time period
when PRS may influence high depressive symptoms,
showing that increased genetic risk for depression
may manifest through elevated depressive symptoms
during late childhood to early adolescence (approx-
imately age 10–15). This result was in line with
previous work that showed an association between
PRS of depression and early-adolescent onset
depressive symptom trajectories (Rice et al., 2018).
As such, early adolescence may be a period when
symptoms linked to genetic liability for depression
are more likely to emerge.

Of note, the childhood decrease class has not been
previously described in the depression genetics
literature. This class was closer to the minimal
symptoms class in terms of genetic influences, which
may reflect maternal or other environmental influ-
ences. Indeed, Hawrilenko et al. (2020) reported that
higher maternal psychopathology and education

distinguish the childhood decrease class from the
minimal symptoms class. The contrast between the
childhood decrease and high/renitent classes also
showed one of the largest decreases in effect size
when maternal PRS for depression was included in
the analysis (Appendix S2). Thus, the childhood
decrease class may represent youths who are at
lower risk for depression, but whose early-life
depressive symptoms are driven by early-life events
not captured by the depression PRS. Since genetics
are stable throughout the life course, it is possible
that genetic vulnerability or resilience to depression
could manifest throughout childhood and adoles-
cence and that while depressive symptom trajecto-
ries vary, individual risk for depression later in life
may remain the same. Previous work has also shown
that the impact of genetics on depression (i.e.,
heritability) increases over time, suggesting that
some youths may self-select environments that
reinforce their genetic susceptibility to depression
(Bergen et al., 2007).

The only depressive symptom trajectory not asso-
ciated with PRS was the adolescent spike class.
Although the small size of this class may have
affected our ability to detect significant associations,
we detected associations between PRS and other
classes of moderate size. As such, membership to
this class may be primarily driven by environmental
factors or sex-specific mechanisms, as shown by
Hawrilenko et al. (2020). Indeed, the adolescent
spike class showed an inflection point consistent
with periods related to both internal (i.e., puberty)
and external factors previously associated with
depression, such as social environment, academic
testing, and the like (Graber, Lewinsohn, Seeley, &
Brooks-Gunn, 1997). However, these results are in
contrast to previous work showing that depression
PRS is associated with trajectories that arise later in
adolescence or early adulthood (Kwong et al., 2019;
Rice et al., 2018). These findings highlight the
importance of multiple timepoints and broader
developmental periods when assessing the factors

Table 1 Odds of reference class assignment for each one standard deviation difference in standardized PRS

Reference category

Minimal
symptoms Adolescent spike

Late childhood
peak

Childhood
decrease High/ reversing

Alternative
Category

Minimal
symptoms

Adolescent
spike

1.14 (0.94, 1.38)

Late childhood
peak

1.30 (1.1, 1.54)* 1.14 (0.89, 1.46)

Childhood
decrease

1.04 (0.90, 1.21) 0.92 (0.73, 1.15) 0.80 (0.65, 0.99)

High/
reversing

1.23 (1.07, 1.41)* 1.08 (0.86, 1.35) 0.95 (0.77, 1.17) 1.18 (0.98, 1.42)

High/ renitent 1.28 (1.17, 1.38)* 1.12 (0.92, 1.36) 0.98 (0.82, 1.18) 1.22 (1.05, 1.42)* 1.04 (0.89, 1.22)

*Statistically significant at FDR < .05.
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influencing depressive symptoms, as shorter time
periods may not have captured these distinct pat-
terns of developmental heterogeneity. Future studies
with access to data extending into adulthood may be
able to further refine these trajectories and deter-
mine whether they do indeed reflect depressive
symptom trajectories that continue into adulthood.

Beyond the polygenic influences of depression, we
found no significant associations between individual
genes and depressive symptom trajectories.
Although the lack of associations may, in part, be
due to small sample size, the genes identified at more
relaxed p-value thresholds may reflect pathways
impacting the manifestation of symptoms during
development. For instance, GABRA4, a member of
the GABAergic pathway, was nominally significant in
the analyses of youths in the high/renitent and
minimal symptoms classes. As this pathway has
been previously associated with depression, our
results could potentially point to a role in shaping
developmental profiles of depression (Luscher, Shen,
& Sahir, 2011). In contrast to our PRS results, our
lack of significant gene-level associations may also
emphasize the polygenicity of depression, where its
characteristics cannot be attributed to specific
genes. Nevertheless, more comprehensive genome-
wide analyses, such as gene sets or pathway anal-
yses, in larger samples may extend these findings by
providing insight into the specific pathways shaping
patterns of depressive symptoms across develop-
ment.

Finally, previous work using these trajectories has
shown that maternal psychopathology, abuse, and
neighborhood-level disadvantage may increase the
risk of belonging to all classes other than the
minimal symptoms group (Hawrilenko et al., 2020).
Given that depressive symptoms are highly corre-
lated with environmental factors in this sample, the
high variation in depressive symptom onset, cumu-
lative burden, and overall trajectory may be attrib-
uted to factors not captured by genetics alone
(Hawrilenko et al., 2020; Smoller et al., 2019).
Genetic and environmental factors may also interact
to drive depressive symptom trajectories, leading to
the more complex phenotypes observed in our study.

Limitations
There are some limitations to the present study.
Aside from the relatively small sample size of this
cohort for genetic analyses, this longitudinal sample
is subject to attrition and self-selection over time and
is composed of mainly European-ancestry youths,
reducing the generalizability of our findings to other
populations (Boyd et al., 2013). Depressive symptom
scores were generated from maternal reports only,
which may introduce inconsistencies over time or
bias in reporting through residual maternal depres-
sion. However, when controlling for maternal

depression PRS in our analyses, we only observed a
small decrease in the effects of child PRS on depres-
sive symptoms trajectories (Appendix S2). These
results suggested that maternal polygenic risk was
not as strong a predictor as the child’s own polygenic
risk, despite child depressive symptoms being
reported by their mothers. The PRS were also
primarily generated from studies of depression in
European adults, limiting the interpretability of
findings in non-European populations (Howard
et al., 2019). In addition, PRS built on summary
statistics from adults may not be entirely reflective of
genetic influences on depressive symptoms during
early life. Nevertheless, as childhood and adult
depression are highly correlated, our results likely
captured a subset of youths that display increased
genetic predisposition to lifetime depression. Finally,
PRS only explain a very small portion of the variance
in depression (1%–2%), which limits their ability to
fully explain the genetic mechanisms influencing
depressive symptom trajectories and may reduce
their application to clinical settings (Martin, Daly,
Robinson, Hyman, & Neale, 2019).

Conclusions
Overall, our findings point to PRS as potential
detectable early risk factors for depressive pheno-
types during childhood and adolescence, particu-
larly in youth with higher depressive symptoms
during early adolescence, provide new insights into
how polygenic influences may shape depressive
symptom trajectories. These findings may ultimately
lead to the identification of genetic factors that shape
age of depression onset and overall disease course,
providing early targets to guide depression preven-
tion efforts.

Supporting information
Additional supporting information may be found online
in the Supporting Information section at the end of the
article:

Appendix S1. Members of the Major Depressive Disor-
der Working Group of the Psychiatric Genomics Con-
sortium.

Appendix S2. Supplemental methods.

Table S1. Summary of the analytical subsample from
the ALSPAC cohort.

Table S2. Means, standard deviations, and correlations
for study variables.

Table S3. Child and mother characteristics stratified by
latent class.

Table S4. Growth parameters for the unconditional six-
class growth mixture model with structured residuals.

Table S5. Sensitivity analysis examining difference in
PRS effects when controlling for mother’s PRS score.

Table S6. Summary of gene-based hits using MAGMA.

Figure S1. Flowchart of ALSPAC sample selection.
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Figure S2. Probability of class assignment for individ-
uals within their assigned latent class.

Figure S3. The PRS with pT < 0.1 was the ‘best fit’
polygenic risk score.

Figure S4. Model estimated proportions of individuals
in each latent class.

Figure S5. Polygenic risk scores identified differences
in membership to classes of depressive symptom
trajectories.

Figure S6. Quantile-quantile (QQ) plots of gene-level
genome-wide associations showed good model fit of the
MAGMA analysis.

Figure S7. Depressive symptom developmental fea-
tures showed nominal gene-level associations.

Figure S8. MAGMA analysis of the probability of
assignment to the high/renitent class.

Figure S9. MAGMA analysis of youths in the high/
renitent versus minimal symptoms class.
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Key points

� The genetic factors that influence early-onset depression and depressive symptoms over developmental time
remain mostly unknown.

� PRS for depression can discriminate between high and low patterns of depressive symptoms during
development, particularly during early adolescence.

� PRS may be detectable risk factors for early-onset depressive phenotypes, particularly in youth with higher
depressive symptoms.

� Further research is needed to understand the environmental and biological mechanisms driving depressive
symptom trajectories.

References
Akingbuwa, W.A., Hammerschlag, A.R., Jami, E.S., Allegrini,

A.G., Karhunen, V., Sallis, H., . . . &Middeldorp, C.M. (2020).
Longitudinal analyses in 42,998 subjects show genetic
associations between childhood psychopathology and adult
depression and related traits. JAMA Psychiatry, 77(7), 715–
728. https://doi.org/10.1001/jamapsychiatry.2020.0527

Angold, A., Costello, E.J., Messer, S.C., & Pickles, A. (1995).
Development of a short questionnaire for use in epidemio-
logical studies of depression in children and adolescents.

International Journal of Methods in Psychiatric Research, 5,
237–249.

Bakk, Z., & Kuha, J. (2018). Two-step estimation of models
between latent classes and external variables. Psychome-
trika, 83, 871–892.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false
discovery rate: A practical and powerful approach to multi-
ple testing. Journal of the Royal Statistical Society: Series B
(Methodological), 57, 289–300.

Bergen, S.E., Gardner, C.O., & Kendler, K.S. (2007). Age-
related changes in heritability of behavioral phenotypes over

© 2020 Association for Child and Adolescent Mental Health.

902 Alexandre A. Lussier et al. J Child Psychol Psychiatr 2021; 62(7): 895–904

 14697610, 2021, 7, D
ow

nloaded from
 https://acam

h.onlinelibrary.w
iley.com

/doi/10.1111/jcpp.13342 by H
arvard U

niversity, W
iley O

nline L
ibrary on [08/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf
http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf
http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf
https://doi.org/10.1001/jamapsychiatry.2020.0527


adolescence and young adulthood: A meta-analysis. Twin
Research and Human Genetics, 10, 423–433.

Boyd, A., Golding, J., Macleod, J., Lawlor, D.A., Fraser, A.,
Henderson, J., . . . & Davey Smith, G. (2013). Cohort Profile:
the ’children of the 90s’–the index offspring of the Avon
Longitudinal Study of Parents and Children. International
Journal of Epidemiology, 42, 111–127.

Cai, N., Choi, K.W., & Fried, E.I. (2020). Reviewing the genetics
of heterogeneity in depression: operationalizations, mani-
festations and etiologies. Human Molecular Genetics, 29(R1),
R10–R18.

Curran, P.J., Cole, V., Giordano, M., Georgeson, A.R., Hus-
song, A.M., & Bauer, D.J. (2018). Advancing the study of
adolescent substance use through the use of integrative data
analysis. Evaluation and the Health Professions, 41, 216–
245.

de Leeuw, C.A., Mooij, J.M., Heskes, T., & Posthuma, D.
(2015). MAGMA: Generalized gene-set analysis of GWAS
data. PLOS Computational Biology, 11, e1004219.

Ellis, R.E.R., Seal, M.L., Simmons, J.G., Whittle, S., Schwartz,
O.S., Byrne, M.L., & Allen, N.B. (2017). Longitudinal trajec-
tories of depression symptoms in adolescence: psychosocial
risk factors and outcomes. Child Psychiatry and Human
Development, 48, 554–571.

Fraser, A., Macdonald-Wallis, C., Tilling, K., Boyd, A., Golding,
J., Davey Smith, G., . . . & Lawlor, D.A. (2013). Cohort Profile:
the avon longitudinal study of parents and children: ALSPAC
mothers cohort. International Journal of Epidemiology, 42,
97–110.

Goodman, R. (1997). The strengths and difficulties question-
naire: A research note. Journal of Child Psychology and
Psychiatry, 38, 581–586.

Goodman, R. (2001). Psychometric properties of the strengths
and difficulties questionnaire. Journal of the American
Academy of Child and Adolescent Psychiatry, 40, 1337–
1345.

Graber, J.A., Lewinsohn, P.M., Seeley, J.R., & Brooks-Gunn, J.
(1997). Is psychopathology associated with the timing of
pubertal development? Journal of the American Academy of
Child and Adolescent Psychiatry, 36(12), 1768–1776.

Graham, J.W., Taylor, B.J., Olchowski, A.E., & Cumsille, P.E.
(2006). Planned missing data designs in psychological
research. Psychological Methods, 11, 323–343.

Halldorsdottir, T., Piechaczek, C., Soares de Matos, A.P.,
Czamara, D., Pehl, V., Wagenbuechler, P., . . . & Binder,
E.B. (2019). Polygenic risk: Predicting depression outcomes
in clinical and epidemiological cohorts of youths. American
Journal of Psychiatry, 176, 615–625.

Hawrilenko, M., Masyn, K.E., Cerutti, J.K., & Dunn, E.C.
(2020). Individual differences in the course of youth depres-
sion: The importance of renitence and reversion. MedRxiv,
19012872. https://doi.org/10.1101/19012872

Howard, D.M., Adams, M.J., Clarke, T.-K., Hafferty, J.D.,
Gibson, J., Shirali, M., . . . & Consortium, M. D. D. W. G. of
the P. G (2019). Genome-wide meta-analysis of depression
identifies 102 independent variants and highlights the
importance of the prefrontal brain regions. Nature Neuro-
science, 22, 343–352.

Kessler, R.C., Berglund, P., Demler, O., Jin, R., Merikangas,
K.R., & Walters, E.E. (2005). Lifetime prevalence and age-of-
onset distributions of DSM-IV disorders in the national
comorbidity survey replication. JAMA Psychiatry, 62, 593–
602.

Kline, R.B. (2015). Principles and practice of structural
equation modeling (4th edn). New York, NY: The Guilford
Press.

Kwong, A.S.F., L�opez-L�opez, J.A., Hammerton, G., Manley, D.,
Timpson, N.J., Leckie, G., & Pearson, R.M. (2019). Genetic
and environmental risk factors associated with trajectories
of depression symptoms from adolescence to young adult-
hood genetic and environmental risk factors associated with

trajectories of depression symptoms genetic and environ-
mental risk factors. JAMA Network Open, 2, e196587.

Lee, S.H., Ripke, S., Neale, B.M., Faraone, S.V., Purcell, S.M.,
Perlis, R.H., . . . & Wray, N.R. (2013). Genetic relationship
between five psychiatric disorders estimated from genome-
wide SNPs. Nature Genetics, 45, 984.

Luby, J.L. (2010). Preschool depression: The importance of
identification of depression early in development. Current
Directions in Psychological Science, 19, 91–95.

Luscher, B., Shen, Q., & Sahir, N. (2011). The GABAergic
deficit hypothesis of major depressive disorder. Molecular
Psychiatry, 16, 383–406.

Martin, A.R., Daly, M.J., Robinson, E.B., Hyman, S.E., &
Neale, B.M. (2019). Predicting polygenic risk of psychiatric
disorders. Biological Psychiatry, 86, 97–109.

McLaughlin, K.A., Green, J.G., Gruber, M.J., Sampson, N.A.,
Zaslavsky, A.M., & Kessler, R.C. (2012). Childhood adversi-
ties and first onset of psychiatric disorders in a national
sample of US adolescents. Archives of General Psychiatry,
69, 1151.

Merikangas, K.R., He, J.-P., Burstein, M., Swanson, S.A.,
Avenevoli, S., Cui, L., . . . & Swendsen, J. (2010). Lifetime
prevalence of mental disorders in U.S. adolescents: Results
from the National Comorbidity Survey Replication-Adoles-
cent Supplement (NCS-A). Journal of the American Academy
of Child and Adolescent Psychiatry, 49, 980–989.

Mills, J.C., Pence, B.W., Todd, J.V., Bengtson, A.M., Breger,
T.L., Edmonds, A., . . . & Adimora, A.A. (2018). Cumulative
burden of depression and all-cause mortality in women
living with human immunodeficiency virus. Clinical Infec-
tious Diseases, 67, 1575–1581.

Muth�en, L.K., & Muth�en, B.O. (2017). Mplus user’s guide (8th
edn). Los Angeles: Author.

Nandi, A., Beard, J.R., & Galea, S. (2009). Epidemiologic
heterogeneity of common mood and anxiety disorders over
the lifecourse in the general population: a systematic review.
BMC Psychiatry, 9, 31.

Nivard, M.G., Dolan, C.V., Kendler, K.S., Kan, K.-J., Willem-
sen, G., van Beijsterveldt, C.E.M., . . . & Boomsma, D.I.
(2015). Stability in symptoms of anxiety and depression as a
function of genotype and environment: a longitudinal twin
study from ages 3 to 63 years. Psychological Medicine, 45,
1039–1049.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira,
M.A., Bender, D., . . . & Sham, P.C. (2007). PLINK: A tool set
for whole-genome association and population-based linkage
analyses. American Journal of Human Genetics, 81, 559–
575.

Rice, F., Riglin, L., Thapar, A.K., Heron, J., Anney, R.,
O’Donovan, M.C., & Thapar, A. (2018). Characterizing
developmental trajectories and the role of neuropsychiatric
genetic risk variants in early-onset depression. JAMA Psy-
chiatry, 76, 306–313.

Riglin, L., Hammerton, G., Heron, J., Collishaw, S., Arse-
neault, L., Thapar, A.K., . . . & Thapar, A. (2018). Develop-
mental contributions of schizophrenia risk alleles and
childhood peer victimization to early-onset mental health
trajectories. American Journal of Psychiatry, 176, 36–43.

Sallis, H., Evans, J., Wootton, R., Krapohl, E., Oldehinkel, A.J.,
DaveySmith,G., & Paternoster, L. (2017). Genetics of depres-
sive symptoms in adolescence.BMCPsychiatry, 17, 321.

Smoller, J.W., Andreassen, O.A., Edenberg, H.J., Faraone,
S.V., Glatt, S.J., & Kendler, K.S. (2019). Psychiatric genetics
and the structure of psychopathology. Molecular Psychiatry,
24, 409–420.

Vermunt, J.K. (2017). Latent class modeling with covariates:
Two improved three-step approaches. Political Analysis, 18,
450–469.

Waugh, C.E., & Koster, E.H.W. (2015). A resilience framework
for promoting stable remission from depression. Clinical
Psychology Review, 41, 49–60.

© 2020 Association for Child and Adolescent Mental Health.

doi:10.1111/jcpp.13342 Genetic contributions to depressive symptom trajectories 903

 14697610, 2021, 7, D
ow

nloaded from
 https://acam

h.onlinelibrary.w
iley.com

/doi/10.1111/jcpp.13342 by H
arvard U

niversity, W
iley O

nline L
ibrary on [08/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1101/19012872


Whalen, D.J., Sylvester, C.M., & Luby, J.L. (2017). Depression
and anxiety in preschoolers: A review of the past 7 years.
Child and Adolescent Psychiatric Clinics of North America,
26, 503–522.

Wray, N.R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne,
E.M., Abdellaoui, A., . . . & Consortium, the M. D. D. W. G. of
the P. G (2018). Genome-wide association analyses identify
44 risk variants and refine the genetic architecture of major
depression. Nature Genetics, 50, 668–681.

Zisook, S., Lesser, I., Stewart, J.W., Wisniewski, S.R., Bala-
subramani, G.K., Fava, M., . . . & Rush, A.J. (2007). Effect of
age at onset on the course of major depressive disorder.
American Journal of Psychiatry, 164, 1539–1546.

Accepted for publication: 15 September 2020

© 2020 Association for Child and Adolescent Mental Health.

904 Alexandre A. Lussier et al. J Child Psychol Psychiatr 2021; 62(7): 895–904

 14697610, 2021, 7, D
ow

nloaded from
 https://acam

h.onlinelibrary.w
iley.com

/doi/10.1111/jcpp.13342 by H
arvard U

niversity, W
iley O

nline L
ibrary on [08/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Supporting Information – Genetic susceptibility for major depressive disorder associates
with trajectories of depressive symptoms across childhood and adolescence – by Lussier et

al.

Appendix S1. Major Depressive Disorder Working Group of the Psychiatric Genomics 

Consortium.

Naomi R Wray* 1, 2
Stephan Ripke* 3, 4, 5
Manuel Mattheisen* 6, 7, 8
Maciej Trzaskowski 1
Enda M Byrne 1
Abdel Abdellaoui 9
Mark J Adams 10
Esben Agerbo 11, 12, 13
Tracy M Air 14
Till F M Andlauer 15, 16
Silviu-Alin Bacanu 17
Marie Bækvad-Hansen 13, 18
Aartjan T F Beekman 19
Tim B Bigdeli 17, 20
Elisabeth B Binder 15, 21
Julien Bryois 22
Henriette N Buttenschøn 13, 23, 
24
Jonas Bybjerg-Grauholm 13, 18
Na Cai 25, 26
Enrique Castelao 27
Jane Hvarregaard Christensen 8,
13, 24
Toni-Kim Clarke 10
Jonathan R I Coleman 28
Lucía Colodro-Conde 29
Baptiste Couvy-Duchesne 2, 30
Nick Craddock 31
Gregory E Crawford 32, 33
Gail Davies 34
Ian J Deary 34
Franziska Degenhardt 35
Eske M Derks 29
Nese Direk 36, 37
Conor V Dolan 9
Erin C Dunn 38, 39, 40
Thalia C Eley 28
Valentina Escott-Price 41
Farnush Farhadi Hassan Kiadeh 
42
Hilary K Finucane 43, 44
Jerome C Foo 45
Andreas J Forstner 35, 46, 47, 
48
Josef Frank 45

Héléna A Gaspar 28
Michael Gill 49
Fernando S Goes 50
Scott D Gordon 29
Jakob Grove 8, 13, 24, 51
Lynsey S Hall 10, 52
Christine Søholm Hansen 13, 18
Thomas F Hansen 53, 54, 55
Stefan Herms 35, 47
Ian B Hickie 56
Per Hoffmann 35, 47
Georg Homuth 57
Carsten Horn 58
Jouke-Jan Hottenga 9
David M Hougaard 13,18
David M Howard 10, 28
Marcus Ising 59
Rick Jansen 19
Ian Jones 60
Lisa A Jones 61
Eric Jorgenson 62
James A Knowles 63
Isaac S Kohane 64, 65, 66
Julia Kraft 4
Warren W. Kretzschmar 67
Zoltán Kutalik 68, 69
Yihan Li 67
Penelope A Lind 29
Donald J MacIntyre 70, 71
Dean F MacKinnon 50
Robert M Maier 2
Wolfgang Maier 72
Jonathan Marchini 73
Hamdi Mbarek 9
Patrick McGrath 74
Peter McGuffin 28
Sarah E Medland 29
Divya Mehta 2, 75
Christel M Middeldorp 9, 76, 77
Evelin Mihailov 78
Yuri Milaneschi 19
Lili Milani 78
Francis M Mondimore 50
Grant W Montgomery 1
Sara Mostafavi 79, 80

Niamh Mullins 28
Matthias Nauck 81, 82
Bernard Ng 80
Michel G Nivard 9
Dale R Nyholt 83
Paul F O'Reilly 28
Hogni Oskarsson 84
Michael J Owen 60
Jodie N Painter 29
Carsten Bøcker Pedersen 11, 12,
13
Marianne Giørtz Pedersen 11, 
12, 13
Roseann E Peterson 17, 85
Erik Pettersson 22
Wouter J Peyrot 19
Giorgio Pistis 27
Danielle Posthuma 86, 87
Jorge A Quiroz 88
Per Qvist 8, 13, 24
John P Rice 89
Brien P. Riley 17
Margarita Rivera 28, 90
Saira Saeed Mirza 36
Robert Schoevers 91
Eva C Schulte 92, 93
Ling Shen 62
Jianxin Shi 94
Stanley I Shyn 95
Engilbert Sigurdsson 96
Grant C B Sinnamon 97
Johannes H Smit 19
Daniel J Smith 98
Hreinn Stefansson 99
Stacy Steinberg 99
Fabian Streit 45
Jana Strohmaier 45
Katherine E Tansey 100
Henning Teismann 101
Alexander Teumer 102
Wesley Thompson 13, 54, 103, 
104
Pippa A Thomson 105
Thorgeir E Thorgeirsson 99
Matthew Traylor 106



Jens Treutlein 45
Vassily Trubetskoy 4
Andrés G Uitterlinden 107
Daniel Umbricht 108
Sandra Van der Auwera 109
Albert M van Hemert 110
Alexander Viktorin 22
Peter M Visscher 1, 2
Yunpeng Wang 13, 54, 104
Bradley T. Webb 111
Shantel Marie Weinsheimer 13, 
54
Jürgen Wellmann 101
Gonneke Willemsen 9
Stephanie H Witt 45
Yang Wu 1
Hualin S Xi 112
Jian Yang 2, 113
Futao Zhang 1
Volker Arolt 114
Bernhard T Baune 115, 116, 117
Klaus Berger 101
Dorret I Boomsma 9
Sven Cichon 35, 47, 118, 119
Udo Dannlowski 114
EJC de Geus 9, 120

J Raymond DePaulo 50
Enrico Domenici 121
Katharina Domschke 122, 123
Tõnu Esko 5, 78
Hans J Grabe 109
Steven P Hamilton 124
Caroline Hayward 125
Andrew C Heath 89
Kenneth S Kendler 17
Stefan Kloiber 59, 126, 127
Glyn Lewis 128
Qingqin S Li 129
Susanne Lucae 59
Pamela AF Madden 89
Patrik K Magnusson 22
Nicholas G Martin 29
Andrew M McIntosh 10, 34
Andres Metspalu 78, 130
Ole Mors 13, 131
Preben Bo Mortensen 11, 12, 
13, 24
Bertram Müller-Myhsok 15, 
132, 133
Merete Nordentoft 13, 134
Markus M Nöthen 35
Michael C O'Donovan 60

Sara A Paciga 135
Nancy L Pedersen 22
Brenda WJH Penninx 19
Roy H Perlis 38, 136
David J Porteous 105
James B Potash 137
Martin Preisig 27
Marcella Rietschel 45
Catherine Schaefer 62
Thomas G Schulze 45, 93, 138, 
139, 140
Jordan W Smoller 38, 39, 40
Kari Stefansson 99, 141
Henning Tiemeier 36, 142, 143
Rudolf Uher 144
Henry Völzke 102
Myrna M Weissman 74, 145
Thomas Werge 13, 54, 146
Cathryn M Lewis* 28, 147
Douglas F Levinson* 148
Gerome Breen* 28, 149
Anders D Børglum* 8, 13, 24
Patrick F Sullivan* 22, 150, 
151,

1, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, AU
2, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, AU
3, Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, US
4, Department of Psychiatry and Psychotherapy, Universitätsmedizin Berlin Campus Charité Mitte, Berlin, DE
5, Medical and Population Genetics, Broad Institute, Cambridge, MA, US
6, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wurzburg, Wurzburg, DE
7, Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, SE
8, Department of Biomedicine, Aarhus University, Aarhus, DK
9, Dept of Biological Psychology & EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, 
Amsterdam, NL
10, Division of Psychiatry, University of Edinburgh, Edinburgh, GB
11, Centre for Integrated Register-based Research, Aarhus University, Aarhus, DK
12, National Centre for Register-Based Research, Aarhus University, Aarhus, DK
13, iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research,, DK
14, Discipline of Psychiatry, University of Adelaide, Adelaide, SA, AU
15, Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, DE
16, Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, DE
17, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, US
18, Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, DK
19, Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, NL
20, Virginia Institute for Psychiatric and Behavior Genetics, Richmond, VA, US
21, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, US
22, Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, SE
23, Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, DK
24, iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, DK
25, Human Genetics, Wellcome Trust Sanger Institute, Cambridge, GB
26, Statistical genomics and systems genetics, European Bioinformatics Institute (EMBL-EBI), Cambridge, GB
27, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, CH



28, Social, Genetic and Developmental Psychiatry Centre, King's College London, London, GB
29, Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, AU
30, Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, AU
31, Psychological Medicine, Cardiff University, Cardiff, GB
32, Center for Genomic and Computational Biology, Duke University, Durham, NC, US
33, Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, US
34, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, GB
35, Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, DE
36, Epidemiology, Erasmus MC, Rotterdam, Zuid-Holland, NL
37, Psychiatry, Dokuz Eylul University School Of Medicine, Izmir, TR
38, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, US
39, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston, MA, US
40, Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, US
41, Neuroscience and Mental Health, Cardiff University, Cardiff, GB
42, Bioinformatics, University of British Columbia, Vancouver, BC, CA
43, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, US
44, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, US
45, Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty 
Mannheim, Heidelberg University, Mannheim, Baden-Württemberg, DE
46, Department of Psychiatry (UPK), University of Basel, Basel, CH
47, Department of Biomedicine, University of Basel, Basel, CH
48, Centre for Human Genetics, University of Marburg, Marburg, DE
49, Department of Psychiatry, Trinity College Dublin, Dublin, IE
50, Psychiatry & Behavioral Sciences, Johns Hopkins University, Baltimore, MD, US
51, Bioinformatics Research Centre, Aarhus University, Aarhus, DK
52, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, GB
53, Danish Headache Centre, Department of Neurology, Rigshospitalet, Glostrup, DK
54, Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Capital Region of 
Denmark, Copenhagen, DK
55, iPSYCH, The Lundbeck Foundation Initiative for Psychiatric Research, Copenhagen, DK
56, Brain and Mind Centre, University of Sydney, Sydney, NSW, AU
57, Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University 
Medicine and Ernst Moritz Arndt University Greifswald, Greifswald, Mecklenburg-Vorpommern, DE
58, Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center 
Basel, F. Hoffmann-La Roche Ltd, Basel, CH
59, Max Planck Institute of Psychiatry, Munich, DE
60, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, GB
61, Department of Psychological Medicine, University of Worcester, Worcester, GB
62, Division of Research, Kaiser Permanente Northern California, Oakland, CA, US
63, Psychiatry & The Behavioral Sciences, University of Southern California, Los Angeles, CA, US
64, Department of Biomedical Informatics, Harvard Medical School, Boston, MA, US
65, Department of Medicine, Brigham and Women's Hospital, Boston, MA, US
66, Informatics Program, Boston Children's Hospital, Boston, MA, US
67, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, GB
68, Institute of Social and Preventive Medicine (IUMSP), University Hospital of Lausanne, Lausanne, VD, CH
69, Swiss Institute of Bioinformatics, Lausanne, VD, CH
70, Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, GB
71, Mental Health, NHS 24, Glasgow, GB
72, Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, DE
73, Statistics, University of Oxford, Oxford, GB
74, Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, US
75, School of Psychology and Counseling, Queensland University of Technology, Brisbane, QLD, AU
76, Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health Service, South 
Brisbane, QLD, AU
77, Child Health Research Centre, University of Queensland, Brisbane, QLD, AU
78, Estonian Genome Center, University of Tartu, Tartu, EE



79, Medical Genetics, University of British Columbia, Vancouver, BC, CA
80, Statistics, University of British Columbia, Vancouver, BC, CA
81, DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, University 
Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, DE
82, Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, 
Mecklenburg-Vorpommern, DE
83, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, AU
84, Humus, Reykjavik, IS
85, Virginia Institute for Psychiatric & Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 
US
86, Clinical Genetics, Vrije Universiteit Medical Center, Amsterdam, NL
87, Complex Trait Genetics, Vrije Universiteit Amsterdam, Amsterdam, NL
88, Solid Biosciences, Boston, MA, US
89, Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, US
90, Department of Biochemistry and Molecular Biology II, Institute of Neurosciences, Biomedical Research Centre 
(CIBM), University of Granada, Granada, ES
91, Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, NL
92, Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University Munich, 
Munich, DE
93, Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, Ludwig Maximilian University 
Munich, Munich, DE
94, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, US
95, Behavioral Health Services, Kaiser Permanente Washington, Seattle, WA, US
96, Faculty of Medicine, Department of Psychiatry, University of Iceland, Reykjavik, IS
97, School of Medicine and Dentistry, James Cook University, Townsville, QLD, AU
98, Institute of Health and Wellbeing, University of Glasgow, Glasgow, GB
99, deCODE Genetics / Amgen, Reykjavik, IS
100, College of Biomedical and Life Sciences, Cardiff University, Cardiff, GB
101, Institute of Epidemiology and Social Medicine, University of Münster, Münster, Nordrhein-Westfalen, DE
102, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, 
DE
103, Department of Psychiatry, University of California, San Diego, San Diego, CA, US
104, KG Jebsen Centre for Psychosis Research, Norway Division of Mental Health and Addiction, Oslo University 
Hospital, Oslo, NO
105, Medical Genetics Section, CGEM, IGMM, University of Edinburgh, Edinburgh, GB
106, Clinical Neurosciences, University of Cambridge, Cambridge, GB
107, Internal Medicine, Erasmus MC, Rotterdam, Zuid-Holland, NL
108, Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases 
Discovery & Translational Medicine Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, CH
109, Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Mecklenburg-
Vorpommern, DE
110, Department of Psychiatry, Leiden University Medical Center, Leiden, NL
111, Virginia Institute for Psychiatric & Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 
US
112, Computational Sciences Center of Emphasis, Pfizer Global Research and Development, Cambridge, MA, US
113, Institute for Molecular Bioscience; Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 
AU
114, Department of Psychiatry, University of Münster, Münster, Nordrhein-Westfalen, DE
115, Department of Psychiatry, University of Münster, Münster, DE
116, Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, AU
117, Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, AU
118, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, CH
119, Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, DE
120, Amsterdam Public Health Institute, Vrije Universiteit Medical Center, Amsterdam, NL
121, Centre for Integrative Biology, Università degli Studi di Trento, Trento, Trentino-Alto Adige, IT



122, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, 
University of Freiburg, Freiburg, DE
123, Center for NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, DE
124, Psychiatry, Kaiser Permanente Northern California, San Francisco, CA, US
125, Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of 
Edinburgh, Edinburgh, GB
126, Department of Psychiatry, University of Toronto, Toronto, ON, CA
127, Centre for Addiction and Mental Health, Toronto, ON, CA
128, Division of Psychiatry, University College London, London, GB
129, Neuroscience Therapeutic Area, Janssen Research and Development, LLC, Titusville, NJ, US
130, Institute of Molecular and Cell Biology, University of Tartu, Tartu, EE
131, Psychosis Research Unit, Aarhus University Hospital, Risskov, Aarhus, DK
132, Munich Cluster for Systems Neurology (SyNergy), Munich, DE
133, University of Liverpool, Liverpool, GB
134, Mental Health Center Copenhagen, Copenhagen Universtity Hospital, Copenhagen, DK
135, Human Genetics and Computational Biomedicine, Pfizer Global Research and Development, Groton, CT, US
136, Psychiatry, Harvard Medical School, Boston, MA, US
137, Psychiatry, University of Iowa, Iowa City, IA, US
138, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, US
139, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Goettingen, 
Niedersachsen, DE
140, Human Genetics Branch, NIMH Division of Intramural Research Programs, Bethesda, MD, US
141, Faculty of Medicine, University of Iceland, Reykjavik, IS
142, Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, Zuid-Holland, NL
143, Psychiatry, Erasmus MC, Rotterdam, Zuid-Holland, NL
144, Psychiatry, Dalhousie University, Halifax, NS, CA
145, Division of Epidemiology, New York State Psychiatric Institute, New York, NY, US
146, Department of Clinical Medicine, University of Copenhagen, Copenhagen, DK
147, Department of Medical & Molecular Genetics, King's College London, London, GB
148, Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, US
149, NIHR Maudsley Biomedical Research Centre, King's College London, London, GB
150, Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, US
151, Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, US

Appendix S2. Supplemental methods.

Cohort description

Data came from the Avon Longitudinal Study of Parents and Children (ALSPAC), a prospective,

longitudinal birth cohort of children born to mothers who were living in the county of Avon 

England (120 miles west of London) with estimated delivery dates between April 1991 and 

December 1992  ALSPAC was designed to identify the determinants of health across the 

lifespan, with an emphasis on genetic and environmental factors. The initial number of 

pregnancies enrolled is 14,541 (for these at least one questionnaire has been returned or a 



“Children in Focus” clinic had been attended by 19/07/99). Of these initial pregnancies, there 

was a total of 14,676 fetuses, resulting in 14,062 live births and 13,988 children who were alive 

at 1 year of age. When the oldest children were approximately 7 years old, an attempt was made 

to bolster the initial sample with eligible cases who had failed to join the study originally, 

resulting in an additional 913 children being enrolled. As such, the total sample size for analyses 

using any data collected after the age of seven is therefore 15,454 pregnancies, resulting in 

15,589 fetuses. Of these 14,901 were alive at 1 year of age. The ALSPAC website contains 

details of all the data that is available through a fully searchable data dictionary and variable 

search tool: www.bristol.ac.uk/alspac/researchers/our-data/. Ethical approval for the study was 

obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics 

Committee. Informed consent for the use of data collected via questionnaires and clinics was 

obtained from participants following the recommendations of the ALSPAC Ethics and Law 

Committee at the time.

Genotyping, quality control, and imputation

We performed standard quality control measures to exclude youths on the basis of gender 

mismatch, minimal or excessive heterozygosity, individual genotyping call rates < 97%, 

insufficient sample replication (IBD<0.8), cryptic relatedness (IBD>0.1), and non-European 

ancestry (assessed using multidimensional scaling analysis and compared to HapMap II, release 

22). For the current analyses, we further excluded 21 youths who self-reported as non-whites. 

We excluded genotyped SNPs based on the following criteria: minor allele frequency <1%; 

missing rate >5%; and significant deviation from Hardy-Weinberg Equilibrium (p<1e-7). We 

conducted imputation using Impute V2.2.2 against the 1000 genomes reference panel (Phase 1, 

http://www.bristol.ac.uk/alspac/researchers/our-data/


version 3), with 2,186 reference haplotypes including non-Europeans (Abecasis et al., 2012; 

Marchini, Howie, Myers, McVean, & Donnelly, 2007). 

Confirmatory factor analysis of the growth mixture modeling with structured residuals

As noted in the main text, we used confirmatory factor analysis to combine information across 

all questionnaire items into a single factor score estimate representing the latent cause of their 

shared variability, which we interpreted as depressive symptoms (Hawrilenko, Masyn, Cerutti, &

Dunn, 2020; Kline, 2015). Preliminary measurement invariance analyses revealed that some 

items changed over time due to non-depression-related factors, suggesting scalar non-invariance.

We accounted for this scalar non-invariance by combining items into parcels (meaning, the 

averaged subsets of items) with internally consistent patterns of scalar non-invariance; we also 

released scalar constraints on the non-invariant waves, allowing the non-invariant parcels to 

contribute to factor score information within each wave, but not to changes in factor scores 

across waves (Little, Cunningham, Shahar, & Widaman, 2002). Standardized factor loadings 

were moderate to strong for items representing emotional difficulties (range: 0.61 to 0.81) and in 

the moderate range for peer difficulties (range: 0.39 to 0.55). Full details of the measurement 

invariance analyses can be found in the technical supplement for Hawrilenko and colleagues, 

2020 (Child Development).

Polygenic risk score (PRS) generation and selection

Prior to score construction, we performed additional genomic quality control procedures by 

removing imputed SNPs with imputation quality metric score <0.8, MAF <1%, call rate <95%, 

and HWE p<1e-6. SNPs were then pruned for linkage disequilibrium using p-value informed 



clump-based pruning in PLINK v1.90 (r2=0.25 within a 250kb window). We created the PRS in 

PLINK v.1.07, using methods described by Purcell et al., where the PRS for each youth was the 

sum of the risk alleles (0, 1, or 2) for each SNP at a given p-value threshold weighted by the 

logarithm of its odds ratio (OR) for MDD in the PGC GWAS (Purcell et al., 2007). Using Pthe 

summary statistics from Howard et al., 2019 (PGC-MDD2, UK Biobank, 23andme) as the 

discovery sample and the ALSPAC cohort as the training sample, we selected independent 

subsets of SNPs from GWAS summary data at 10 GWAS significance thresholds (pT), 0.0001, 

0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 1. We standardized all PRS prior to analysis so that 

all reported ORs could be interpreted as a one standard deviation increase in the score. As the 

PRS with pT<0.1 explained the most phenotypic variance in the analytic sample compared to the 

other scores (Wald omnibus value = 45.8; Chi-squared p-value  < 1e-4; Figure S6), we focused 

on the results from this ‘best model fit’ score. 

Modal class assignment in the MAGMA analysis

Modal class assignments were used in the gene-level MAGMA analysis, as to our knowledge, no

existing software tools currently exist to account for measurement error/classification uncertainty

inherent to GMM in genome-wide analyses. To this end, participants were assigned to latent 

classes based on posterior probabilities of their membership in each latent class, calculated from 

their observed data and the latent class model parameters. Each youth had probabilities summing

to 100%, reflecting their probability of assignment to each of the 6 latent classes. To assign a 

modal class to each individual, we selected the latent class with the highest probability. Using 

this approach, the average modal class probability (i.e., the highest probability class for each 

individual) across all individuals was 76% (SD = 18%; Figure S2). With this approach, the 



number of youths assigned to each trajectory class was estimated as follows: 4,146 minimal 

symptoms (56.7%), 182 adolescent spike (2.5%), 222 late childhood peak (3%), 440 childhood 

decrease (6%),  423 high/reversing (5.8%), and 1,895 high/renitent (25.9%). Although modal-

class assignment may lead to lower standard errors to or overly-optimistic inferential tests, point 

estimates remained unbiased (Vermunt, 2017). We also note that modal class proportions are 

slightly different from the model-estimated proportions reported in Figure 1, as they do not take 

into account the “second place” and “third place” class assignments for each individual

(Hawrilenko et al., 2020).

Sensitivity analyses of class assignment in the MAGMA analyses

We performed additional analyses in MAGMA using trajectories classes. First, we performed a 

case/control analysis on individuals in the high/renitent and minimal symptoms class who had a 

modal class probability equal to or greater than 80%. This threshold resulted in 786 youths in the

high/renitent class and 2,258 youths in the minimal symptoms class (Figure S9). Second, we 

performed an analysis on continuous probabilities for the high/renitent class across all 

individuals (0-100%) (Figure S8).
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Table S1. Summary of the analytical subsample from the ALSPAC cohort.
Original Sample

(N=15445)
Analytic Sample 
(N=7,308)

Original vs. 
Analytic

n (%) n (%) χ2 p-value
Sex
    Males  7542 (51.3) 3707 (50.7) 0.151
    Females  7152 (48.7) 3601 (49.3) 
Race 

    Non-white   611 (5.1) 0 (0) <0.001
    White 11488 (94.9) 6639 (100.0) 
Age of Mother at Child's Birth
    Ages 15-19   650 (4.6)  142 (2.0) <0.001
    Ages 20-35 12363 (88.4) 6281 (89.8) 
    Age 36+   968 (6.9)  575 (8.2) 
Parental Social Class

   Professional  1419 (9.6)  942 (12.9) <0.001
   Managerial and technical  4288 (29.0) 2583 (35.3) 
   Skilled, non-manual  2623 (17.8) 1456 (19.9) 
   Skilled, manual   909 (6.2)  438 (6.0) 
   Semi-skilled, manual   270 (1.8)  125 (1.7) 
   Unskilled, manual/other  5254 (35.6) 1764 (24.1) 
Number of previous pregnancies
    0  5800 (44.7) 3045 (44.9) <0.001
    1  4550 (35.0) 2480 (36.6) 
    2  1860 (14.3)  921 (13.6) 
    3+   772 (5.9)  330 (4.9) 
Birth weight (g)
    < 3000  3649 (24.8) 1572 (21.5) <0.001
    3000 - 3499  4924 (33.5) 2446 (33.5) 
    3500 - 3999  4382 (29.8) 2338 (32.0) 
    >= 4000  1735 (11.8)  952 (13.0) 
Maternal Education
    less than O-level  3735 (30.0) 1575 (23.3) <0.001
    O-level  4303 (34.6) 2366 (35.1) 
    A-level  2795 (22.5) 1724 (25.5) 
    Degree or Above  1603 (12.9) 1084 (16.1) 
Maternal Marital Status
    Never Married  2522 (19.2)  950 (13.9) <0.001
    Widowed/Divorced/Separated   787 (6.0)  364 (5.3) 
    Married  9838 (74.8) 5529 (80.8) 
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Table S2. Means, standard deviations, and correlations for study variables.

Variable
n 

(% non-missing) M SD Min/Max 1 2 3 4 5 6 7

   1. Dep. 3.9 years 6054 (82.8) 0.75 0.30 0.13/1.88 --- --- --- --- --- --- ---

   2. Dep. 6.8 years 5644 (77.2) 0.76 0.35 0.05/1.99 0.79
--- --- --- --- ---

---

   3.  Dep.8.1 years 5414 (74.1) 0.83 0.36 0.07/2.05 0.71 0.90
--- --- --- ---

---

   4.  Dep.9.6 years 5632 (77.1) 0.75 0.38 0.00/2.00 0.63 0.83 0.87
--- --- ---

---

   5.  Dep.11.7 years 5275 (72.2) 0.73 0.39 0.06/2.17 0.54 0.75 0.78 0.83
--- ---

---

   6.  Dep.13.1 years 5099 (69.8) 0.73 0.40 0.04/2.20 0.54 0.73 0.74 0.79 0.85 --- ---

   7.  Dep. 16.5 years 4167 (57.0) 0.74 0.40 0.02/2.24 0.51 0.65 0.69 0.68 0.72 0.77 ---

   8.  Child PRS 7308 (100.0)* 0.00 1.00 -4.24/3.48 0.06 0.09 0.09 0.09 0.10 0.10 0.10

Note. M = Mean. SD = Standard Deviation. Dep = Depression. PRS = Polygenic Risk Score.  Participants were 

included in the count of non-missing if they had at least one complete parcel of the SDQ or SMFQ. *Child PRS was 

non-missing by definition, as all participants with missing PRS were excluded. 

Table S3. Child and mother characteristics stratified by latent class.
Overall Minimal

Symptoms
Adolescent

Spike
Late

Childhood
Peak

Childhood
Decrease

High and
Reversing

High and
Renitent

χ2 p-
value

n 7308 4146 182 222 440 423 1895
Mother's age at birth (%)
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    Ages 15-19 142 (2.0) 71 (1.8) 1 (0.6) 4 (1.8) 10 (2.3) 7 (1.7) 49 (2.7) 0.73
    Ages 20-35 6281 (89.8) 3568 (89.9) 160 (90.4) 194 (89.4) 389 (89.4) 365 (90.1) 1605 (89.5)

    Age 36+ 575 (8.2) 332 (8.4) 16 (9.0) 19 (8.8) 36 (8.3) 33 (8.1) 139 (7.8)
Marital status (%)
   Never Married 950 (13.9) 516 (13.3) 15 (8.6) 18 (8.5) 58 (13.6) 59 (14.9) 284 (16.3) 0.02
    Widowed/ Divorced/      
    Separated

364 (5.3) 203 (5.2) 7 (4.0) 9 (4.2) 19 (4.4) 27 (6.8) 99 (5.7)

    Married 5529 (80.8) 3167 (81.5) 152 (87.4) 186 (87.3) 350 (82.0) 310 (78.3) 1364 (78.1)
Parent SES (%)
    Professional 942 (12.9) 561 (13.5) 21 (11.5) 33 (14.9) 63 (14.3) 61 (14.4) 203 (10.7) 0.035
    Managerial and technical 2583 (35.3) 1456 (35.1) 75 (41.2) 91 (41.0) 156 (35.5) 155 (36.6) 650 (34.3)
    Skilled, non-manual 1456 (19.9) 823 (19.9) 47 (25.8) 44 (19.8) 91 (20.7) 82 (19.4) 369 (19.5)
    Skilled, manual 438 (6.0) 245 (5.9) 1 (0.5) 13 (5.9) 27 (6.1) 25 (5.9) 127 (6.7)
    Semi-skilled, manual 125 (1.7) 69 (1.7) 2 (1.1) 3 (1.4) 8 (1.8) 4 (0.9) 39 (2.1)
    Unskilled, manual/other 1764 (24.1) 992 (23.9) 36 (19.8) 38 (17.1) 95 (21.6) 96 (22.7) 507 (26.8)
Mother's education (%)
    Less than O-level 1575 (23.3) 873 (22.8) 27 (15.4) 43 (19.9) 94 (22.0) 85 (21.4) 453 (26.4) 0.01
    O-level 2366 (35.1) 1360 (35.6) 63 (36.0) 66 (30.6) 147 (34.4) 131 (33.0) 599 (35.0)
    A-level 1724 (25.5) 1000 (26.2) 54 (30.9) 62 (28.7) 102 (23.9) 104 (26.2) 402 (23.5)
    Degree or above 1084 (16.1) 588 (15.4) 31 (17.7) 45 (20.8) 84 (19.7) 77 (19.4) 259 (15.1)
Child sex (%)
    Female 3601 (49.3) 1976 (47.7) 120 (65.9) 111 (50.0) 188 (42.7) 231 (54.6) 975 (51.5) <0.001
    Male 3707 (50.7) 4145 (52.3) 62 (34.1) 111 (50.0) 252 (57.3) 192 (45.4) 920 (48.5)
Previous pregnancies (%)
    0 3045 (44.9) 1631 (42.5) 81 (47.1) 100 (46.7) 199 (46.8) 191 (48.6) 843 (48.7) 0.006
    1 2480 (36.6) 1481 (38.6) 59 (34.3) 79 (36.9) 151 (35.5) 128 (32.6) 582 (33.6)
    2 921 (13.6) 538 (14.0) 29 (16.9) 31 (14.5) 58 (13.6) 50 (12.7) 215 (12.4)
    3+ 330 (4.9) 191 (5.0) 3 (1.7) 4 (1.9) 17 (4.0) 24 (6.1) 91 (5.3)
Birthweight
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    < 3000 1572 (21.5) 850 (20.5) 39 (21.4) 48 (21.6) 78 (17.7) 102 (24.1) 455 (24.0) 0.063
    3000 - 3499 2446 (33.5) 1382 (33.3) 61 (33.5) 76 (34.2) 170 (38.6) 135 (31.9) 622 (32.8)
    3500 - 3999 2338 (32.0) 1355 (32.7) 57 (31.3) 58 (26.1) 142 (32.3) 127 (30.0) 599 (31.6)
    >= 4000 952 (13.0) 559 (13.5) 25 (13.7) 40 (18.0) 50 (11.4) 59 (13.9) 219 (11.6)

Note. Participant characteristics were determined by assigning each individual to their most likely latent class. SES = Socioeconomic 

status. PRS = Polygenic risk score.

Table S4. Growth parameters for the unconditional six-class growth mixture model with structured residuals.

 Latent Class

 
Minimal

Symptoms
Adolescent

Spike

Late
Childhood

Peak
Childhood
Decrease

High and
Reversing

High and
Renitent

Parameter Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)
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Means

    Intercept 0.61 (0.008) 0.78 (0.03) 0.68 (0.03) 1.03 (0.03) 0.84 (0.05) 0.91 (0.02)

    Slope -0.23 (0.04) -0.28 (0.19) 0.90 (0.19) 0.09 (0.18) 0.62 (0.17) 0.68 (0.06)

    Quadratic 0.59 (0.12) 1.81 (0.97) -3.30 (0.80) -2.39 (0.48) -0.22 (0.84) -0.89 (0.23)

    Cubic -0.70 (0.14) -3.01 (1.20) 4.82 (0.80) 2.45 (0.48) -0.74 (1.03) 0.39 (0.25)

    Quartic 0.26 (0.05) 1.41 (0.43) -2.01 (0.34) -0.69 (0.16) 0.41 (0.36) -0.06 (0.09)

    Structured Residual 0.43 (0.04) 0.42 (0.17) -0.49 (0.05) 0.15 (0.09) -0.41 (0.03) 0.87 (0.01)

    Area under the curve 0.87 (0.004) 1.27 (0.03) 1.34 (0.02) 1.09 (0.01) 1.44 (0.02) 1.61 (0.006)

Variances*

    Intercept 0.042 (0.002) 0.042 (0.002) 0.042 (0.002) 0.042 (0.002) 0.042 (0.002) 0.042 (0.002)

    Linear Slope 0.013 (0.001) 0.013 (0.001) 0.013 (0.001) 0.013 (0.001) 0.013 (0.001) 0.013 (0.001)

Note. *Linear time was coded as months divided by 100 and higher order time transformations were based off of that. Variances 

were constrained equal across latent classes. Quadratic and higher order variances were constrained to zero within each class.
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Table S5. Sensitivity analysis examining difference in PRS effects when controlling for mother's PRS score.

Comparison

Child PRS Only

(N = 5311)
Model Includes Mother PRS Scores
 (N = 5311)

Difference Between 
Models

Child Effects Child Effects Mother Effects

Reference Category
Alternative 
Category

Log 
Odds SE

Log 
Odds SE

Log 
Odds SE

Change in 
child log 
odds (raw)

Change in 
child log 
odds (%)

Minimal Symptoms Adolescent Spike 0.14 0.11 0.13 0.12 0.03 0.10 -0.02 -10%
Minimal 
Symptoms

Late Childhood 
Peak 0.21# 0.10 0.15 0.12 0.12 0.13 -0.06 -30%

Minimal Symptoms
Childhood 
Decrease 0.08 0.08 0.07 0.09 0.02 0.09 -0.01 -14%

Minimal 
Symptoms

High and 
Reversing 0.22* 0.08 0.16 0.10 0.12 0.08 -0.06 -28%

Minimal 
Symptoms

High and 
Renitent 0.24* 0.05 0.16* 0.06 0.16 0.06 -0.08 -35%

Adolescent Spike
Late Childhood 
Peak 0.07 0.15 0.02 0.16 0.09 0.16 -0.05 -70%

Adolescent Spike
Childhood 
Decrease -0.06 0.13 -0.06 0.15 -0.01 0.13 0.00 -6%

Adolescent Spike
High and 
Reversing 0.07 0.13 0.03 0.15 0.09 0.12 -0.05 -62%

Adolescent Spike High and Renitent 0.10 0.12 0.03 0.13 0.13 0.11 -0.07 -69%
Late Childhood 
Peak

Childhood 
Decrease -0.13 0.12 -0.08 0.14 -0.11 0.14 0.05 -39%

Late Childhood 
Peak

High and 
Reversing 0.01 0.13 0.01 0.14 -0.01 0.14 0.00 0%

Late Childhood 
Peak High and Renitent 0.03 0.11 0.01 0.13 0.04 0.13 -0.02 -69%
Childhood High and 0.14 0.11 0.09 0.12 0.10 0.11 -0.05 -36%
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Decrease Reversing
Childhood 
Decrease

High and 
Renitent 0.16* 0.08 0.09 0.10 0.14 0.09 -0.07 -45%

High and Reversing High and Renitent 0.03 0.09 0.00 0.11 0.04 0.09 -0.02 -96%

Note. Comparisons that were statistically significant in the original analysis are bolded for ease of interpretation. Log odds are shown 

rather than odds ratios because the model is linear in terms of log odds, which facilitates comparisons between parameters in 

percentage terms. The N is smaller than the N for the original model because 1997 participants with child genetic data did not also 

have mother genetic data, and they were listwise deleted to facilitate direct comparisons in changes across models. *FDR<0.05; 

#p<0.05, but FDR>0.05.
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Table S6. Summary of gene-based hits using MAGMA.

Gene Chr Start Stop # of SNPs R2 P-value Association

GABRA4 4 46920917 46996424 218 0.0069 6.84e-5 HR vs MS

LRR1 14 50065415 50081390 43 0.0045 4.71e-5 HR vs MS

SIX5 19 46268043 46272497 3 0.0029 9.16e-6 AUC

DMPK 19 46272975 46285815 17 0.0030 4.97e-5 AUC

DKK1 10 54074041 54077417 5 0.0023 9.23e-5 AUC

SIX5 19 46268043 46272497 3 0.0033 5.56e-6 Intercept

DMPK 19 46272975 46285815 17 0.0042 1.05e-5 Intercept

SMDT1 22 42475695 42480288 6 0.0033 2.31e-5 Intercept

DMWD 19 46286264 46296060 17 0.0041 9.79e-5 Intercept

*HR = high/renitent class; MS = minimal symptoms class; AUC = cumulative burden of 

depressive symptoms; intercept = onset of depressive symptoms

20



Figure S1. Flowchart of ALSPAC sample selection. 

Of the eligible participants after 1 year (14,901), two subsamples were selected: those with 

genetic data (9,912) and those with at least one measure of depressive symptoms from age 4-16 

(11,641). Following quality control measures, the genetic subsample was reduced to 8,082 

individuals. The overlap between these two samples was 7,308 individuals, which we defined as 

the analytical sample for the polygenic risk score (PRS) analyses of depressive symptom 

trajectories, as well as gene-level associations with depressive symptom onset and cumulative 

burden using MAGMA. The analytical sample was further subset to 6,041 individuals for the 

trajectory class-based MAGMA analysis, which focused solely on youths classified as 

high/renitent or minimal symptoms for the depressive symptom trajectories. 
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Figure S2. Probability of class assignment for individuals within their assigned latent class. 

Each individual was assigned to the trajectory class reflecting their highest probability of 

assignment across all classes (which ranged from 0-100).  Within each class, the probability of 

highest assignment ranged from 0.3 to 1. The percentage of youths assigned to each trajectory 

class was estimated  as follows: 4,146 minimal symptoms (56.7%), 182 adolescent spike (2.5%), 

222 late childhood peak (3%), 440 childhood decrease (6%),  423 high/reversing (5.8%), and 

1,895 high/renitent (25.9%).
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Figure S3. The PRS with pT<0.1 was the ‘best fit’ polygenic risk score. 

Using the Wald omnibus test of parameter constraints, we show that the polygenic risk score 

(PRS) generated with the p-value threshold of p<0.1 (green) explained the most variance in the 

depression trajectories. 

23



Figure S4. Model estimated proportions of individuals in each latent class. 

The model-estimated proportion of individuals in each latent class are shown across low (-2 SD) 
average and high (+2 standard deviation) polygenic risk scores. For example, about 60% of 
participants with a risk score 2 standard deviations below the average would be expected to be in
the Minimal Symptoms class, whereas only 40% of participants with a risk score 2 standard 
deviations above average would be expected to be in the Minimal Symptoms class.
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Figure S5. Polygenic risk scores identified differences in membership to classes of depressive 

symptom trajectories. 

Odds ratios (OR) were calculated to determine the odds of membership of each class versus the 

referent given a one unit increase in polygenic risk score (PRS). While five contrasts were 

significant (p<0.05), only four remained significant after multiple test correction at an FDR<0.05

(high/stable vs minimal symptoms; high/stable vs childhood decrease; high/unstable vs minimal 

symptoms). 
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Figure S6. Quantile-quantile (QQ) plots of gene-level genome-wide associations show good 

model fit of the MAGMA analysis. 

A) The QQ plot of the high/stable (HS) and minimal symptoms (MS) classes of depressive 

symptoms trajectories showed good model fit, with a slight downward skew. B) The QQ plot of 

depressive symptom persistence across age 4-16, defined as the area under the curve (AUC) of 

the trajectory was slightly skewed upward, but showed good model fit. C) The QQ plot of 
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depressive symptom onset, defined by the intercept of the trajectory, was also slightly skewed 

upward and showed good model fit. 

 

Figure S7. Depressive symptom developmental features showed nominal gene-level 

associations. 

A) The contrast of high/renitent (HR) and minimal symptoms (MS) classes showed two nominal 

associations (GABRA4, LRR1). B) Depressive symptom cumulative burden (AUC) showed 
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three nominal associations (SIX5, DPMK, DKK1). C) Depressive symptom onset (intercept) 

showed four nominal associations (SIX5, DPKM, SMDT1, DMWD). Genome-wide significance

was set at 2.93e-6 (red) and the nominal threshold was set at 1e-4 (blue). 

Figure S8. MAGMA analysis of the probability of assignment to the high/renitent class. 
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MAGMA was performed using all 7,308 individuals and their probability of being assigned to 

the high/renitent class was used to identify gene-level associations. No genes reached the 

genome-wide significance threshold (p<2.93e-7; red line in B), but one gene reached the nominal

threshold of p<1e4 (blue line in B; results shown in C). 

Figure S9. MAGMA analysis of youths in the high/renitent vs minimal symptoms class. 
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MAGMA was performed using youths in the high/renitent (HR) or minimal symptoms (MS) 

classes that had 80% probability of class assignment (2258 MS vs 786 HR). No genes reached 

the genome-wide significance threshold (p<2.93e-7; red line in B), but three genes reached the 

nominal threshold of p<1e4 (blue line in B; results shown in C). 
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